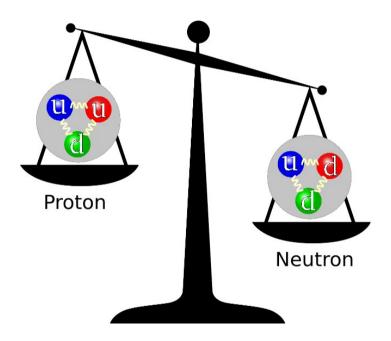
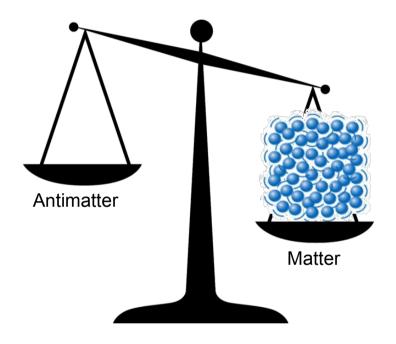


Probing symmetries in the world of hadrons with COSY

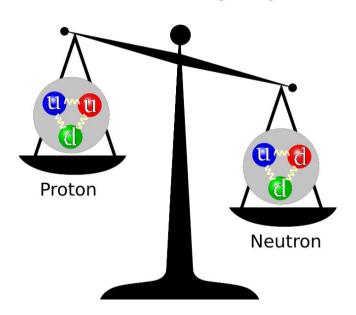

Maria Żurek I Research Center Jülich, Institute for Nuclear Physics

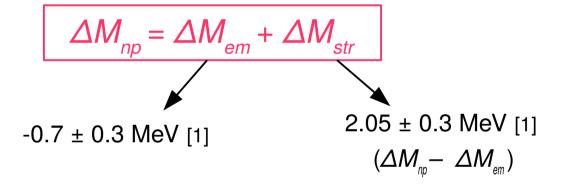
Why does the Universe exist as it is?


Stable hydrogen atom

Isospin symmetry breaking

Matter-antimatter imbalance

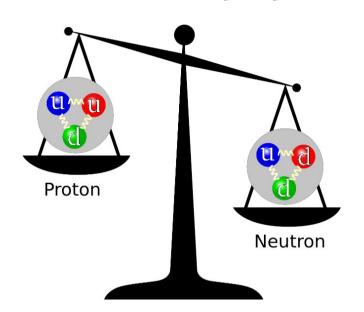

CP symmetry breaking


Electric dipole moment of p,d

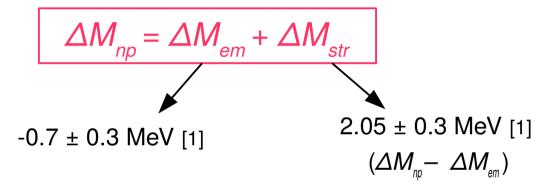
Isospin symmetry - two sources of violation:

- Electromagnetic interaction (Q_{II} ≠ Q_d)
- Strong interaction $(M_u \neq M_d) \mapsto$ window for probing quark mass effects

Nucleon mass difference



^[1] J. Gasser and H. Leutwyler, Phys. Rept. 87, 77-169 (1982)


^[2] S.Weinberg, Trans. New York Acad. Sci. 38, 185-201 (1977)

Isospin symmetry - two sources of violation:

- Electromagnetic interaction (Q₁ ≠ Q_d)
- Strong interaction (M_⊥ ≠ M_d) → window for probing quark mass effects

Nucleon mass difference

Access to ΔM_{str} from dynamic ISB using Chiral Perturbation Theory

 πN scattering length, $a(\pi^0 p) - a(\pi^0 n) = f(\Delta M_{str})$ [2]

However:

- No direct measurement of $\pi^0 N$
- Large electromagnetic corrections in $\pi^{\pm}N$
- [1] J. Gasser and H. Leutwyler, Phys. Rept. 87, 77–169 (1982)
- [2] S.Weinberg, Trans. New York Acad. Sci. 38, 185-201 (1977)

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of $P_{CS}=e^{-i au_2\pi/2}-\Delta m_\pi$ does not contribute

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of $P_{CS}=e^{-i au_2\pi/2}$ – Δm_π does not contribute

1. $np \rightarrow d\pi^0$ forward-backward asymmetry A_{fb} [1]

$$\Delta M_{str} = (1.5 \pm 0.8 \text{ (exp.)} \pm 0.5 \text{ (th.)}) \text{ MeV (LO)} [2]$$

2. $dd \rightarrow {}^{4}\text{He}\pi^{0}$

$$CS \Rightarrow \sigma = 0 \qquad \frac{CS}{CS} \Rightarrow \sigma \neq 0, \ \sigma \propto |M_{CSB}|^2 = |M_1 + M_2 + \dots|^2$$

 $\sigma_{_{\mathrm{tot}}}$ measured at treshold [3]

[1] Opper et al. PRL 91 (2003) 212302

[2] Filin et al. Phys. Lett. B681 (2009) 423

[3] Stephenson et al. PRL 91 (2003) 142302

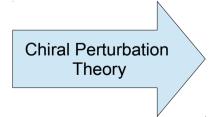
Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of $P_{CS}=e^{-i au_2\pi/2}$ – Δm_π does not contribute

1. $np \rightarrow d\pi^0$ forward-backward asymmetry A_{fb} [1]

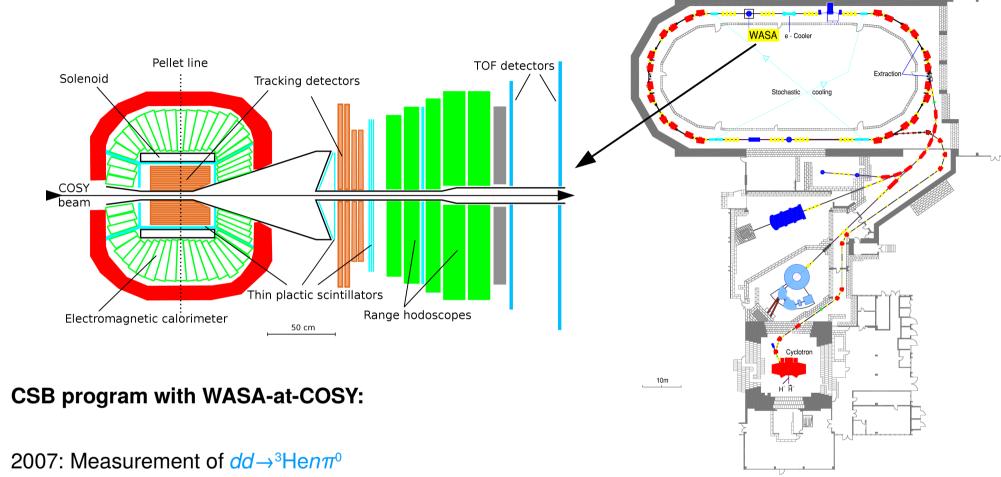

$$\Delta M_{str} = (1.5 \pm 0.8 \text{ (exp.)} \pm 0.5 \text{ (th.)}) \text{ MeV (LO)} [2]$$

2. $dd \rightarrow {}^{4}\text{He}\pi^{0}$

$$CS \Rightarrow \sigma = 0 \qquad \frac{CS}{CS} \Rightarrow \sigma \neq 0, \ \sigma \propto |M_{CSB}|^2 = |M_1 + M_2 + \dots|^2$$

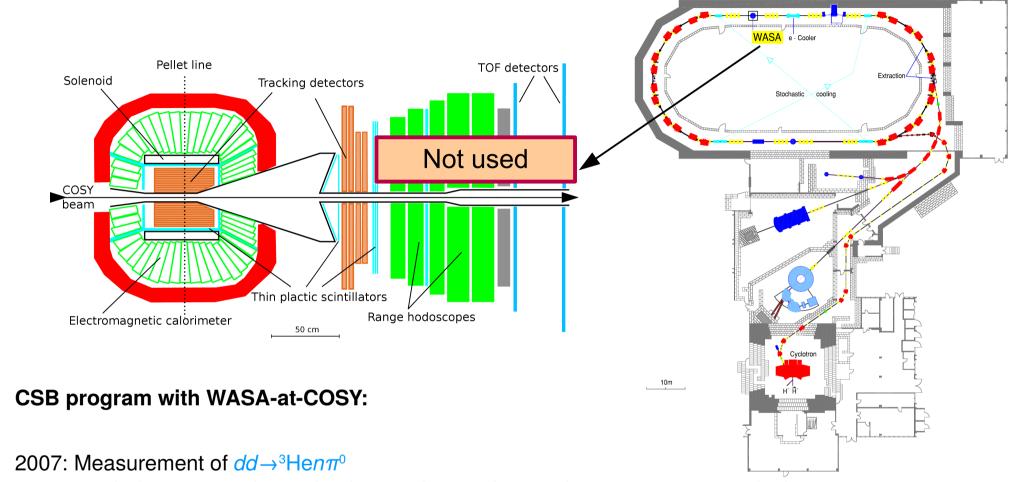
 σ_{tot} measured at treshold [3]

Result at threshold consistent with s-wave


Parameter-free prediction of the *p*-wave contribution in $dd \rightarrow {}^{4}\text{He}\pi^{0}$

[1] Opper et al. PRL 91 (2003) 212302

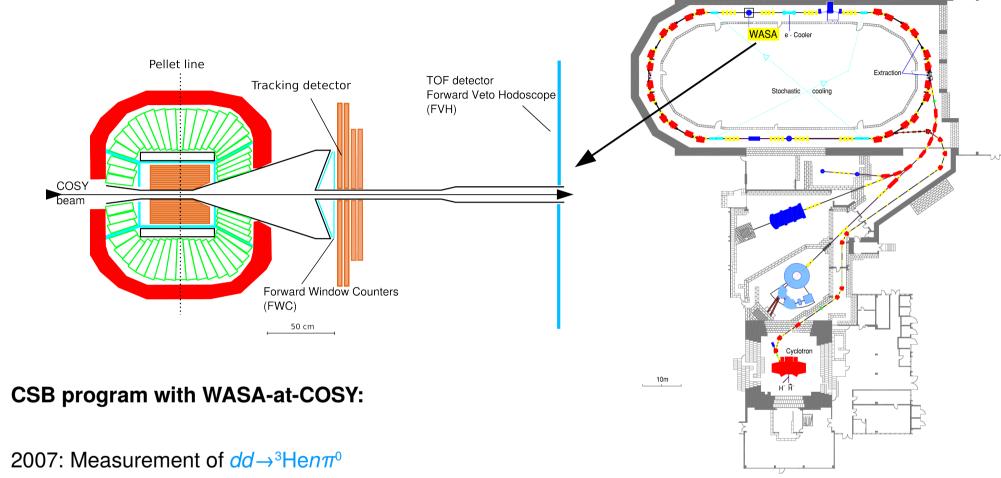
[2] Filin et al. Phys. Lett. B681 (2009) 423


[3] Stephenson et al. PRL 91 (2003) 142302

WASA-at-COSY Experiment

goal: description of main background, input for initial-state-interaction calculations

WASA-at-COSY Experiment

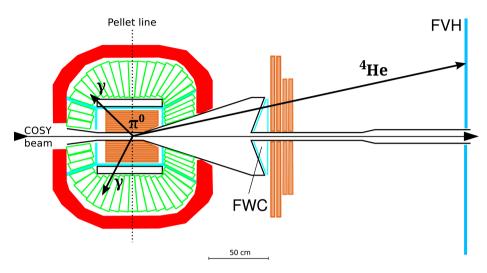

goal: description of main background, input for initial-state-interaction calculations

2008: First measurement of $dd \rightarrow {}^{4}He\pi^{0}$ (2 weeks) @ Q = 60 MeV goal: σ_{total}

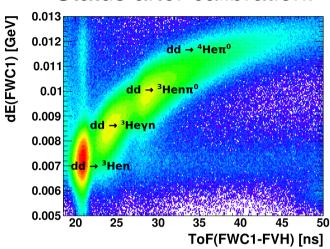
Result consistent with s-wave

Due to limited statistics not decisive to identify higher-wave contribution

WASA-at-COSY Experiment



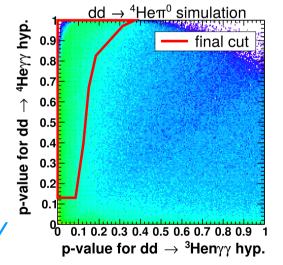
goal: description of main background, input for initial-state-interaction calculations

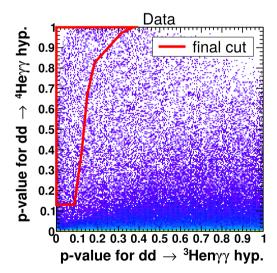

2008: First measurement of $dd \rightarrow {}^{4}He\pi^{0}$ (2 weeks) @ Q = 60 MeV goal: σ_{total}

2014: New measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ (10 weeks) @ Q = 60 MeV with modified detector goal: angular distribution

New Experiment with Improved Setup

Status after calibration:


Background


- $dd \rightarrow (pnd,pnpn,tp) + \pi^0$
- $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ (3·10⁵ higher σ)
- $dd \rightarrow {}^{4}\text{He} \gamma \gamma$ (physics bg)

Overall kinematic fit

→ 2 hypotheses fitted:

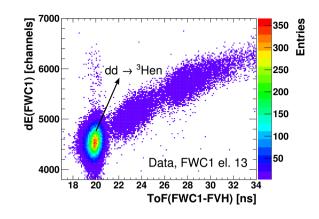
 $dd \rightarrow {}^{4}Heyy \text{ and } dd \rightarrow {}^{3}Henyy$

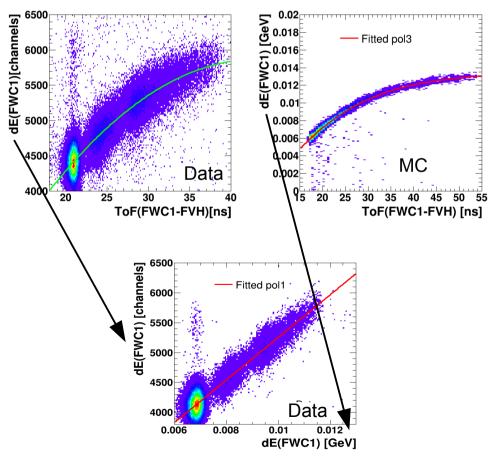
- → Optimized cuts on cumulated probability distribution (p-value)
- \rightarrow Suppresion of $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ about 10⁴

Analysis

Detector Calibration

ToF Calibration

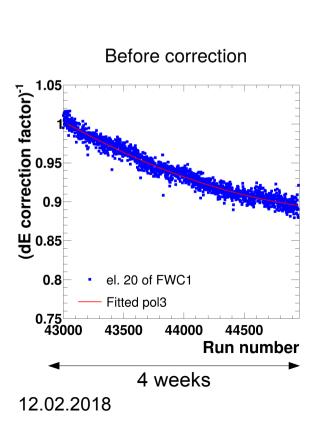

- Offset adjustment for every FWC and FVH element
- dd → ³Hen time peak position used
- Calibrate the data to the MC values for every detector element as a function of θ

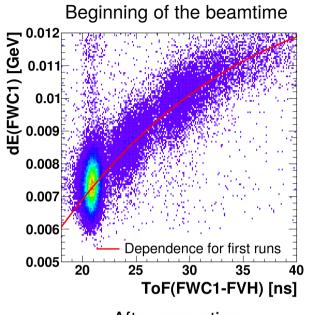


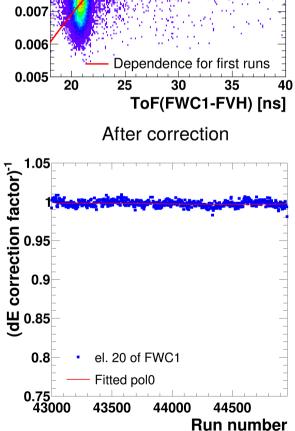
- Gain adjustment for every FWC element
- Based on ToF
 MC: dE [GeV] vs ToF [ns] → dE_{GeV}(ToF)
 Data: dE [channels] vs ToF [ns] → dE_{ch}(ToF)
- \rightarrow θ -dependency correction

Kinetic Energy Reconstruction

- Based on $E_{kin}(ToF)$, $E_{kin}(dE)$
- χ^2 fit used to obtain the best matching E_{kin}

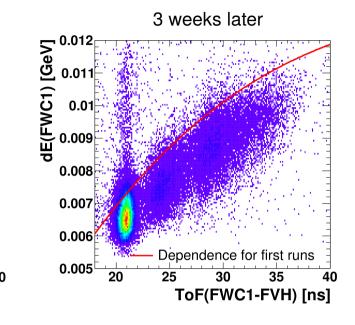



Analysis

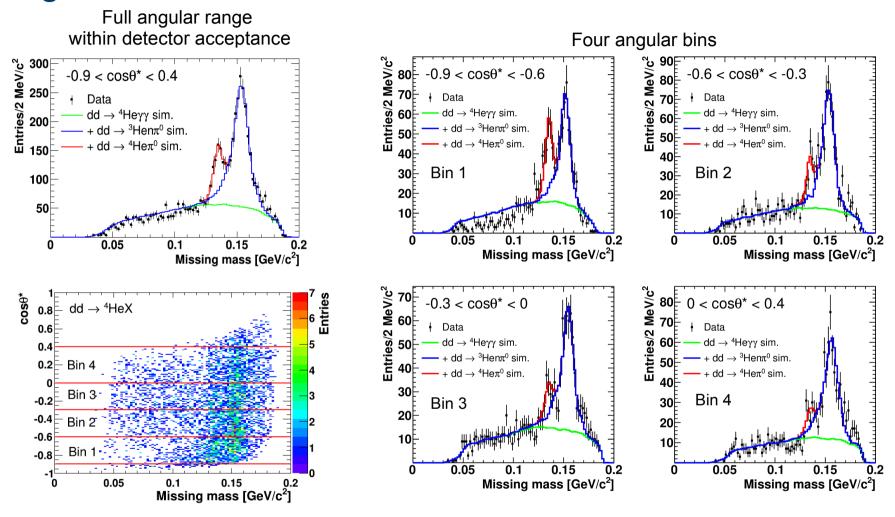

Detector Calibration

- Run-dependent correction for every FWC element
- Middle of the beamtime:

 → high voltage on photomultipliers raised
- Separate calibration for both datasets

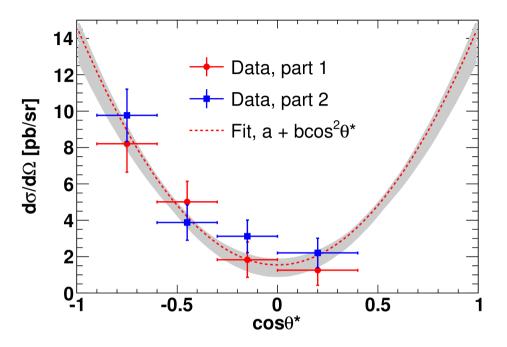


4 weeks


M. Żurek - Symmetries at COSY

- Gain drop from 10% to 25% for different FWC elements
- Run-dependent correction for the ToF calibration also applied

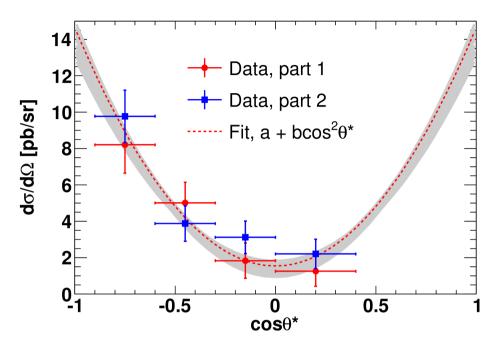
Results


Missing mass of dd → ⁴HeX

- Luminosity determination using $dd \rightarrow {}^{3}Hen\pi^{0}$, normalization to the σ from the previous measurement (Phys. Rev. C 88 (2013) 014004)
- Acceptance correction: 1st assuming uniform angular distribution for the signal, then using measured angular distribution

Results

Differential cross section


Identical particles in the initial state \rightarrow forward-backward symmetric cross section ${\rm d}\sigma/{\rm d}\Omega=a+b\cos^2\theta^*$ fit result:

a =
$$(1.55 \pm 0.46(\text{stat})^{+0.32}_{-0.8}(\text{syst}))$$
 pb/sr
b = $(13.1 \pm 2.1(\text{stat})^{+1.0}_{-2.7}(\text{syst}))$ pb/sr

Common systematic uncertainty of 10% from external normalization

Results

Differential cross section

Identical particles in the initial state \rightarrow forward-backward symmetric cross section ${\rm d}\sigma/{\rm d}\Omega=a+b\cos^2\theta^*$ fit result:

a =
$$(1.55 \pm 0.46(\text{stat})^{+0.32}_{-0.8}(\text{syst}))$$
 pb/sr
b = $(13.1 \pm 2.1(\text{stat})^{+1.0}_{-2.7}(\text{syst}))$ pb/sr

Common systematic uncertainty of 10% from external normalization

p-wave

Considering only s- and p-waves [1]: $b=-\frac{p_{\pi^0}}{p}\frac{2}{3}|C|^2p_{\pi^0}^2$

- p-waves contribute with a **negative** sign \rightarrow maximum at 90° in angular distribution
- Observed minimum at 90° → explained only with d-waves in the final state

Data establish for the first time presence of sizable contribution of d-waves

[1] A. Wronska et al., Eur. Phys. J. A26, 421 (2005).

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \mathrm{Re}(A_0^*A_2) P_2(\cos\theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos\theta^*) p_{\pi^0}^4 + |C|^2 \sin^2\theta^* p_{\pi^0}^2 \right)$$
Full fit with 4 amplitudes and 1 relative phase δ (between A_0 and A_2)
$$+ |B|^2 \sin^2\theta^* \cos^2\theta^* p_{\pi^0}^4$$

→ outside the scope of the presented data

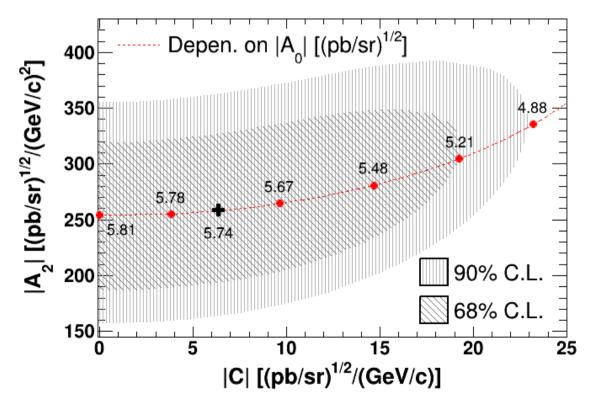
Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \mathrm{Re}(A_0^* A_2) P_2(\cos \theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos \theta^*) p_{\pi^0}^4 + |C|^2 \sin^2 \theta^* p_{\pi^0}^2 \right)$$
Full fit with 4 amplitudes and 1 relative phase δ (between A_0 and A_2)
$$+ |B|^2 \sin^2 \theta^* \cos^2 \theta^* p_{\pi^0}^4$$

$$\to \text{ outside the scope of the presented data}$$

Quantitative results - only using additional constraints:

- 1) Assuming that amplitudes do not carry any momentum dependence: $A_0 = A_{thr}$ from [1]
- 2) Systematic check of the fit \rightarrow **B** fixed to 0, phase δ fixed to 0

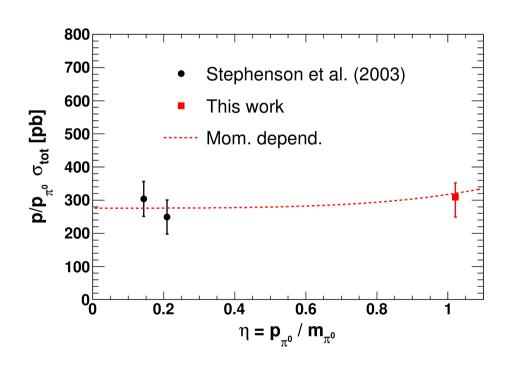

$$|A_2| = \left(258^{+50}_{-42}(\text{stat})^{+45}_{-38}(\text{syst})^{+37}_{-12}(\text{norm})\right) \frac{(\text{pb/sr})^{1/2}}{(\text{GeV}/c)^2}$$

$$|C| = \left(6^{+9}_{-21}(\text{stat})^{+3}_{-10}(\text{syst})^{+10}_{-5}(\text{norm})\right) \frac{(\text{pb/sr})^{1/2}}{\text{GeV}/c}$$

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \mathrm{Re}(A_0^* A_2) P_2(\cos \theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos \theta^*) p_{\pi^0}^4 + |C|^2 \sin^2 \theta^* p_{\pi^0}^2 \right)$$

$$\mathbf{A_0} = \mathbf{A_{thr}} \text{ from [1], } \mathbf{B} - \text{ fixed to 0, phase } \boldsymbol{\delta} - \text{ fixed to 0}$$



[1] Stephenson et al. PRL 91 (2003) 142302

Including *d*-waves, terms up to fourth order in pion momentum has to be considered:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{p_{\pi^0}}{p} \frac{2}{3} \left(|A_0|^2 + 2 \mathrm{Re}(A_0^* A_2) P_2(\cos \theta^*) p_{\pi^0}^2 + |A_2|^2 P_2^2(\cos \theta^*) p_{\pi^0}^4 + |C|^2 \sin^2 \theta^* p_{\pi^0}^2 \right)$$

$$\mathbf{A_0} = \mathbf{A_{thr}} \text{ from [1], } \mathbf{B} - \text{ fixed to 0, phase } \boldsymbol{\delta} - \text{ fixed to 0}$$

Obtained total cross section:

$$\sigma_{\text{tot}} = (76.9 \pm 7.8(\text{stat})^{+1.9}_{-8.8}(\text{syst})^{+8.3}_{-5.7}(\text{norm})) \text{ pb.}$$

Momentum dependence of total cross section

$$\sigma_{\text{tot}} = \frac{p_{\pi^0}}{p} \frac{8\pi}{3} \left(|A_0|^2 + \frac{2}{3} |C|^2 p_{\pi^0}^2 + \frac{1}{5} |A_2|^2 p_{\pi^0}^4 + \frac{2}{15} |B|^2 p_{\pi^0}^4 \right)$$

[1] Stephenson et al. PRL 91 (2003) 142302

What did we learn?

- First measurement of contributions of higher partial waves in the charge symmetry breaking reaction dd \rightarrow ⁴He π^0
- Angular distribution with a minimum at θ^* = 90° can be understood only by the presence of a **significant** *d*-wave contribution in the final state
- Data are consistent with vanishing p-wave contribution

Role of the Δ isobar?

 Deep insights not only into the dynamics of the nucleon-nucleon interaction but also the role of quark masses in hadron dynamic

Baryon Asymmetry Problem

	Standard Model	Observed
$\frac{n_B - n_{\bar{B}}}{n_{\gamma}}$	≈ 10 ⁻¹⁸	6×10^{-10}

Preconditions needed to explain it:

- Baryon number violation
- C and CP violation
- Thermal non-equilibrium in the early Universe

Sakharov (1967)

Baryon Asymmetry Problem

- Electroweak sector (CKM matrix well established)
 - → First observation: 1964 decay of the neutral K meson
- Strong Interactions (so called θ -term)
 - → Not observed experimentally yet (it is very small)
 - → Strong CP puzzle

Predictions orders of magnitude too small to explain the observed matter-antimatter asymmetry!

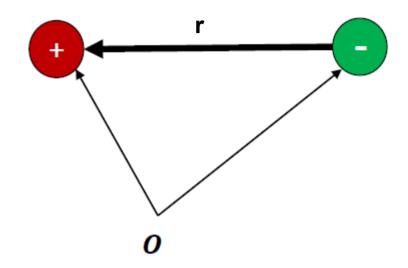
New sources of CP violation Beyond Standard Model needed!

They can manifest in **EDM** of particles

Electric Dipole Moment

Classically

Charge × displacement


In Quantum Mechanics

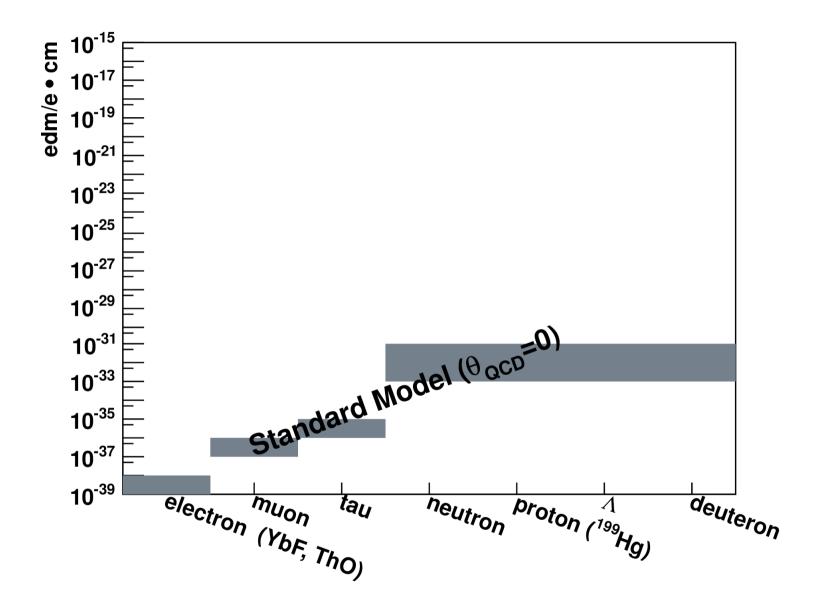
$$d = d\sigma$$

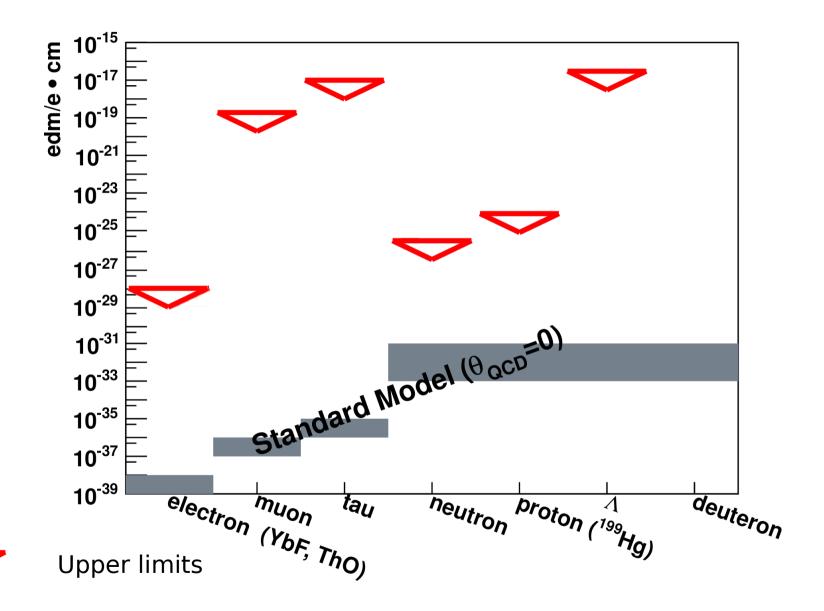
• $\mathbf{d} \parallel \boldsymbol{\sigma}$ and $\boldsymbol{\mu} \parallel \boldsymbol{\sigma}$ (magnetic moment)

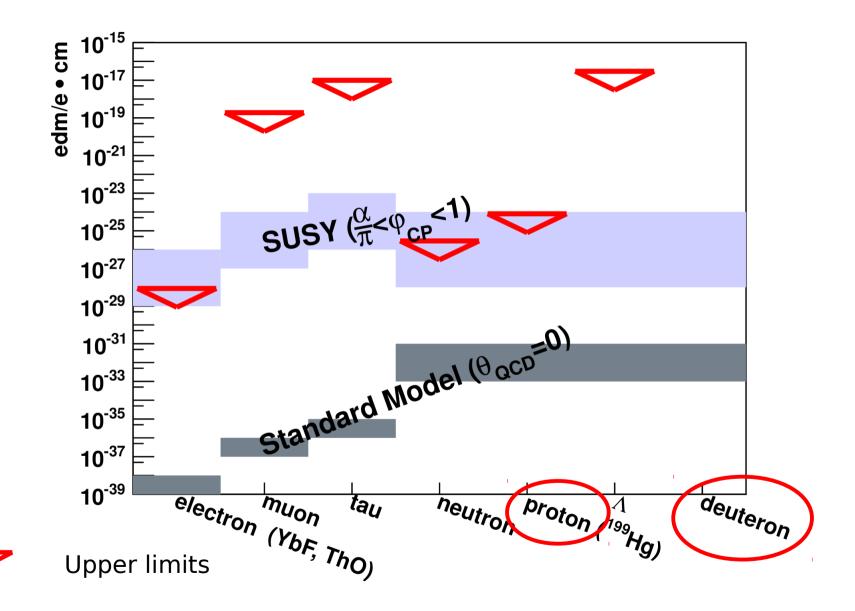
 μ – magnetic dipole moment

d – electric dipole moment

Electric Dipole Moment

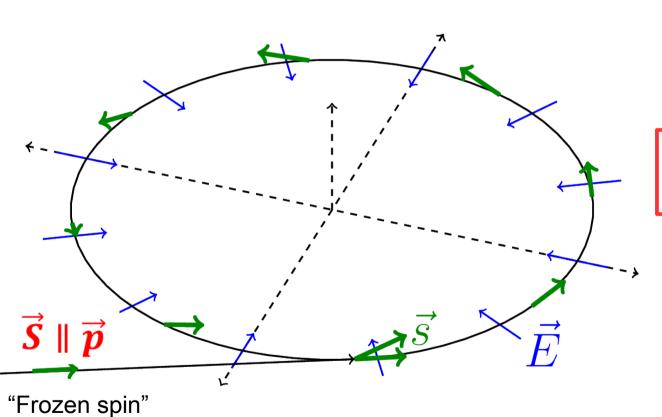

T violation → CP violation (since CPT conserved)


- μ magnetic dipole moment
- **d** electric dipole moment


The observable quantity:

- Energy of electric dipole in electric field
- Energy of magnetic dipole in magnetic field

$$H = H_E + H_M = - \mu \sigma \cdot B - d\sigma \cdot E$$
 $T: H = - \mu \sigma \cdot B + d\sigma \cdot E$
 $P: H = - \mu \sigma \cdot B + d\sigma \cdot E$



Measurement principle

For charged particles:

→ apply electric field in a storage ring

Simplified case:

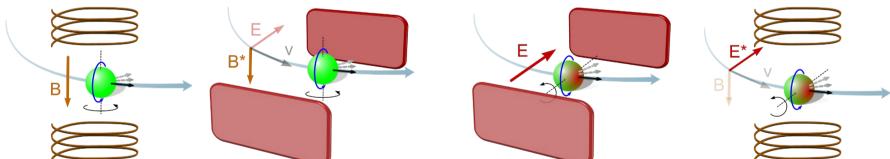
$$\frac{d\vec{S}}{dt} \propto \frac{d\vec{E}}{dt} \times \vec{S}$$

Build-up of vertical polarization by slow precession

Extremely small effects!

With edm ~ 10⁻²⁹ e·cm effect of the order of µdeg/hour

Measurement principle


Thomas-BMT equation:

In storage rings (magnetic field – vertical, electric field - radial)

magnetic moment

EDM

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$

Magnetic moment causes fast spin precession in horizontal plane

 Ω : angular precession frequency

d: electric dipole moment

G: anomalous magnetic moment

y: Lorentz factor

Pure electric ring

magnetic moment

EDM

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$

$$= 0!$$

"frozen spin": precession vanishes at magic momentum

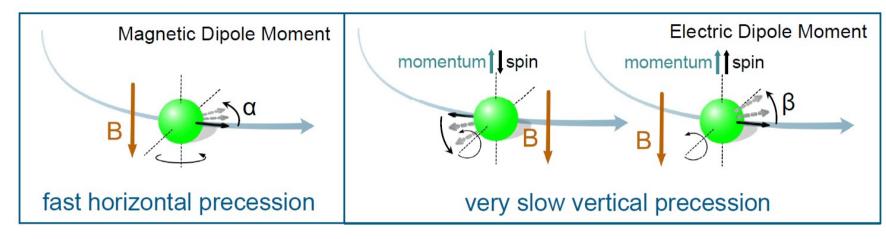
$$G = \frac{1}{\gamma^2 - 1} \implies p = \frac{m}{\sqrt{G}}$$

only possible for G > 0

Dedicated ring for protons

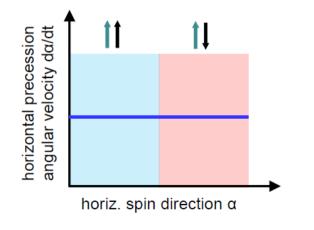
Pure magnetic ring

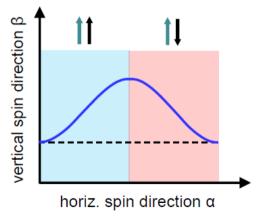
magnetic moment

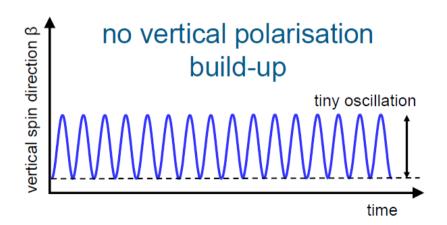

EDM

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$

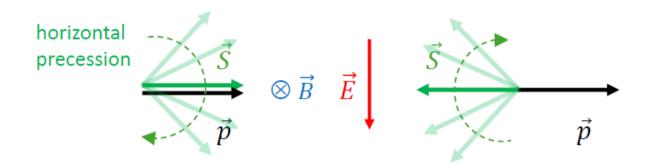
COSY: pure magnetic ring, polarized protons and deuterons access to EDM via motional electric field $\vec{\beta} \times \vec{B}$

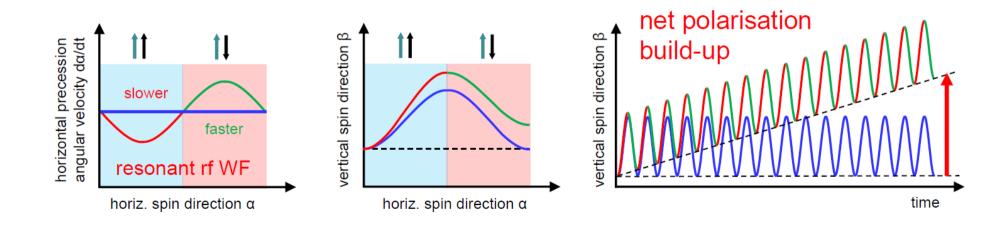

Starting point for a proof-of-principle experiment


Pure magnetic ring



E* field tilts spin due to EDM 50% of time up and 50% of time down


$$\frac{d\vec{S}}{dt} \propto \left(G\vec{B} + d \frac{m_0 c}{q \hbar S} \vec{\beta} \times \vec{B} \right) \times \vec{S}$$



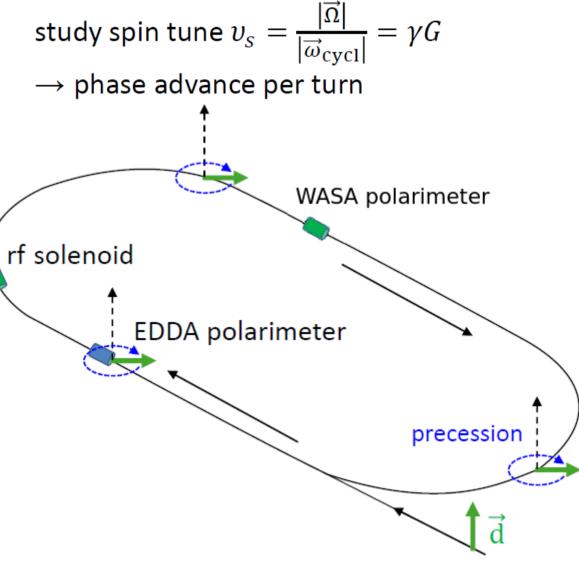
RF Wien Filter method

Lorentz force vanishes: no effect on EDM rotation

Effect: Adds extra horizontal precession

Research and Development at COSY

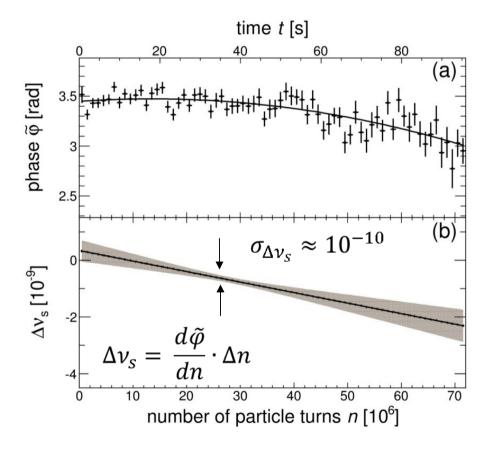
EDMs of charged hadrons: p, d


R&D with deuterons

p = 1 GeV/c

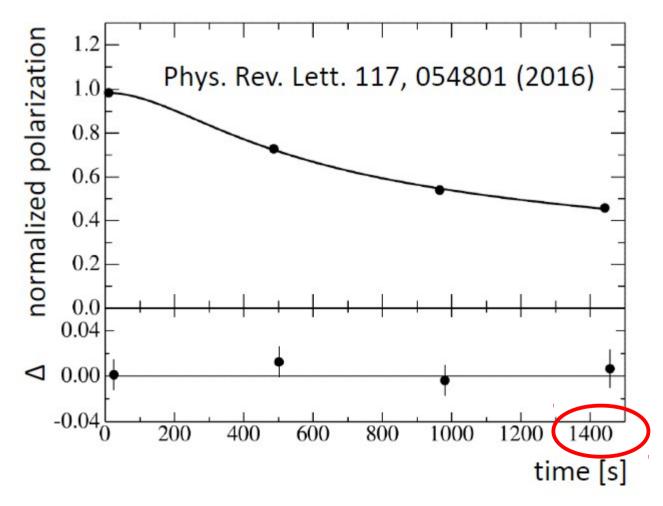
G = -0.14256177(72)

 $v_s \approx -0.161 \rightarrow f \approx 120 \text{ kHz}$



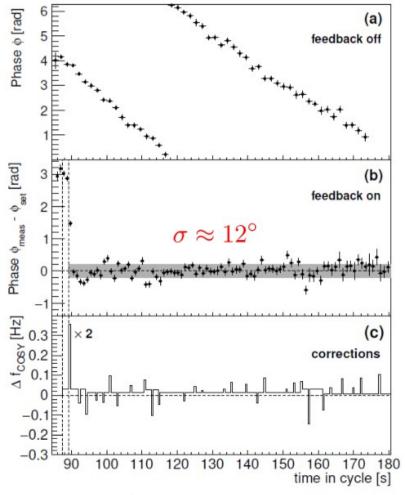
Research and Development at COSY

Precise measurement of the precession frequency (spin tune)


→ also time dependent within one cycle

Phys. Rev. Lett. 115, 094801 (2015)

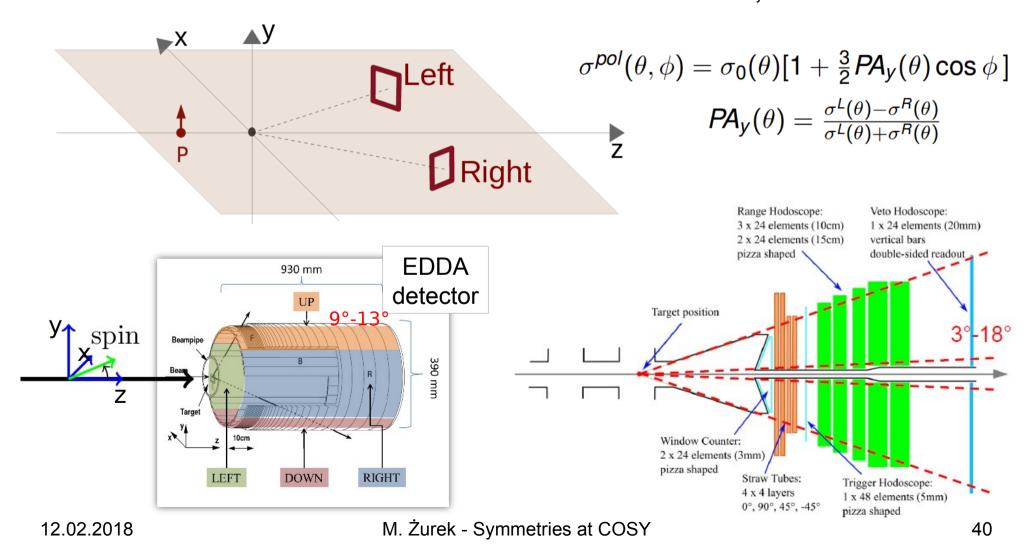
Research and Development at COSY


Maximizing the spin coherence time (goal: ≈1000 s)

Research and Development at COSY

Maintaining the spin direction

- → keep precession frequency stable
- → match frequency and phase to Wien filter radio frequency



Reaction: dC elastic scattering

Up/Down asymmetry

Right/Left asymmetry

 \propto vertical component of polarization P_{v}

Detector signal

$$N^{up,down} = 1 \pm PA \sin(2\pi \cdot f_{\text{prec}}t)$$

= $1 \pm PA \sin(2\pi \cdot v_s n_{\text{turns}})$

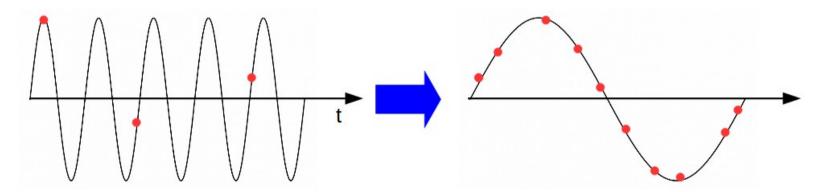
P: polarisation, A: analysing power

Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA \sin(2\pi \cdot v_s \, n_{\text{turns}})$$

Challenges

- precession frequency $f_{\text{prec}} \approx 120 \text{ kHz}$
- $v_s \approx -0.16$ \rightarrow 6 turns / precession
- event rate $\approx 5000 \text{ s}^{-1} \rightarrow 1 \text{ hit } / 25 \text{ precessions}$
 - \rightarrow no direct fit of the rates


Detector signal

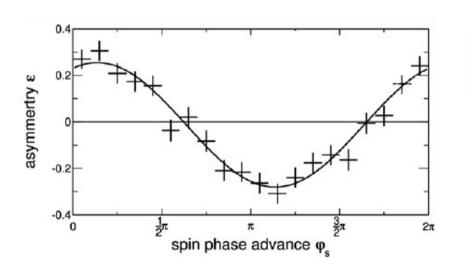
$$N^{up,down} = 1 \pm PA \sin(2\pi \cdot f_{prec}t)$$

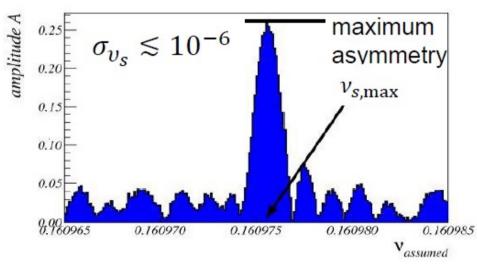
= 1 \pm PA \sin(2\pi \cdot v_s n_{turns})

P: polarisation, A: analysing power

Asymmetry

$$\varepsilon = \frac{N^{up} - N^{down}}{N^{up} + N^{down}} = PA \sin(2\pi \cdot v_s \, n_{\text{turns}})$$

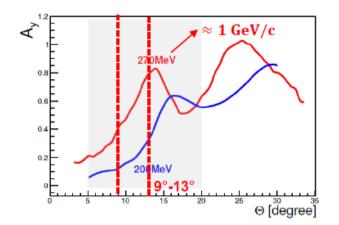



Too few polarimeter events to resolve oscillation directly!

Map many events to one cycle Phys. Rev. ST Accel. Beams 17, 052803 (2014)

beam revolutions: counting turn number n

scan v_s in some interval around $v_s = \gamma G$

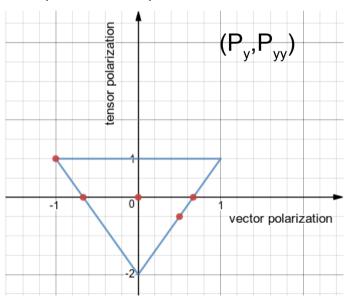


Polarimetry – database experiment

Motivation: database to produce realistic Monte Carlo simulations of detector responses for a polarimeter designed for EDM

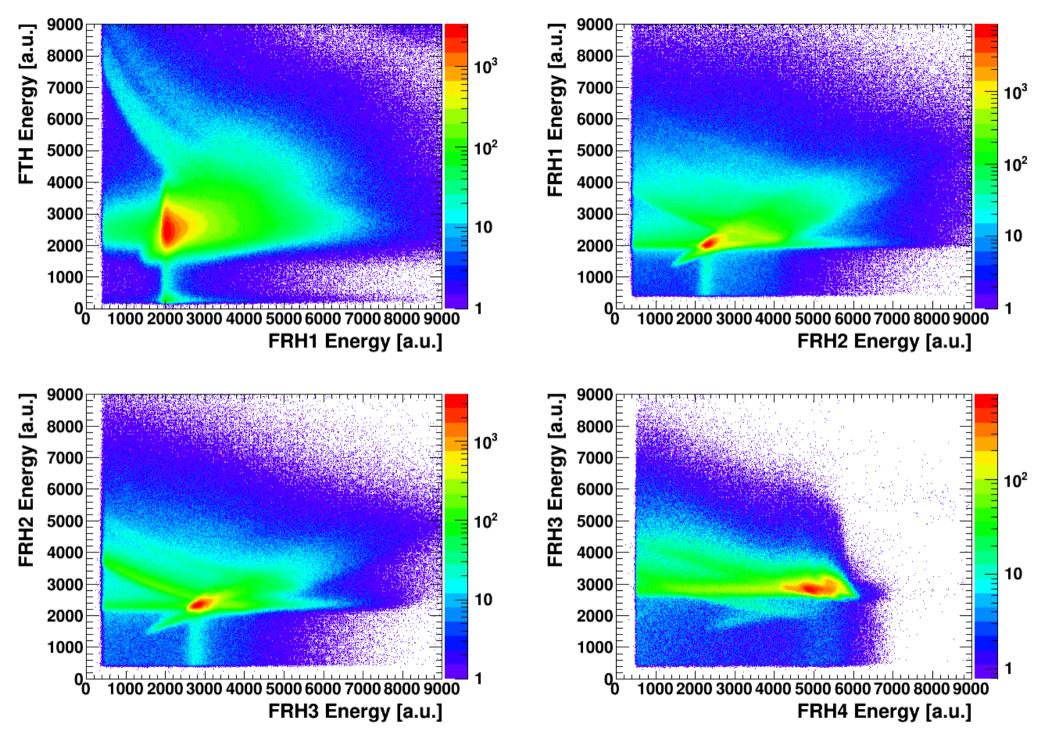
Goal: A_{vv} , A_{vv} , $d\sigma/d\Omega$ for

- → dC elastic scattering
- → main background reactions (deuteron breakup)

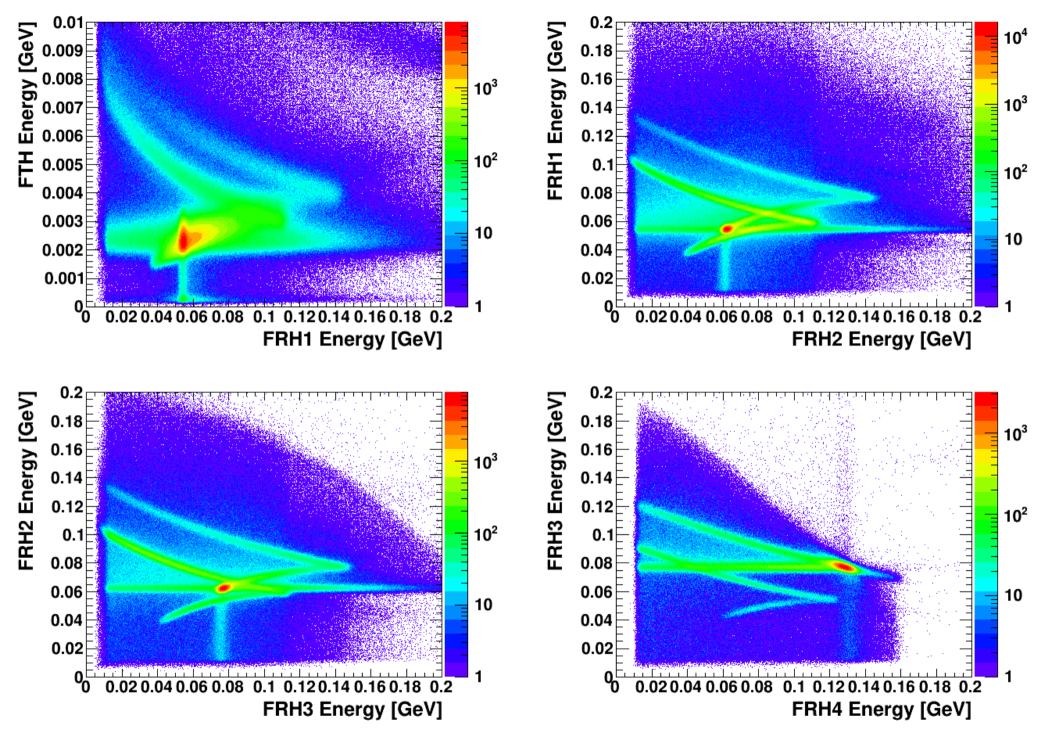

Beamtime in November 2016 (2 weeks)

d energies: 170, 200, 235, 270,

300, 340, 380 MeV **Targets:** C and CH₂

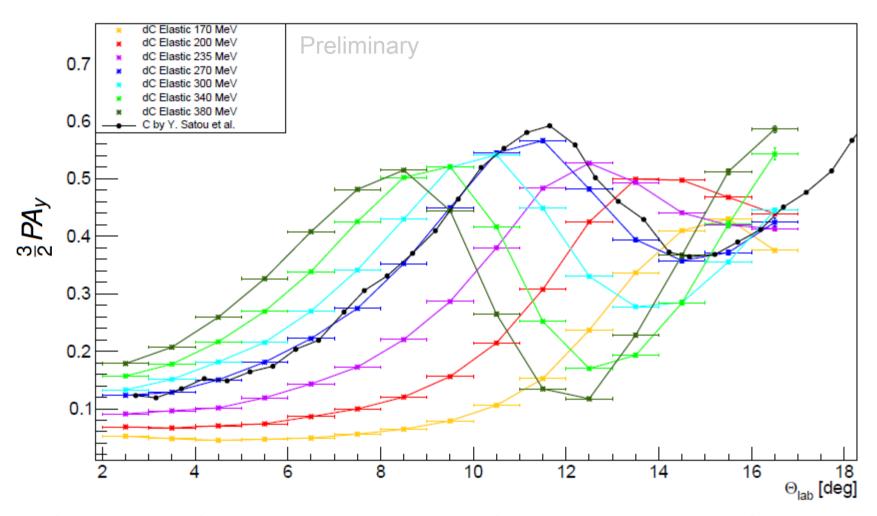

Beam polarization: 5 polarization states $(P_y, P_{yy}) = (0,0), (-\frac{2}{3},0), (\frac{2}{3},0), (\frac{1}{2}, -\frac{1}{2}), (-1, 1)$

Setup: Modified WASA Forward Detector



Polarimetry – database experiment

→ Full φ coverage Range Hodoscope: Veto Hodoscope: \rightarrow θ range 4° - 17° 3 x 24 elements (10cm) 1 x 24 elements (20mm) 2 x 24 elements (15cm) vertical bars double-sided readout pizza shaped Target position Window Counter: 2 x 24 elements (3mm) pizza shaped Straw Tubes: Trigger Hodoscope: 4 x 4 layers 1 x 48 elements (5mm) 0°, 90°, 45°, -45° pizza shaped



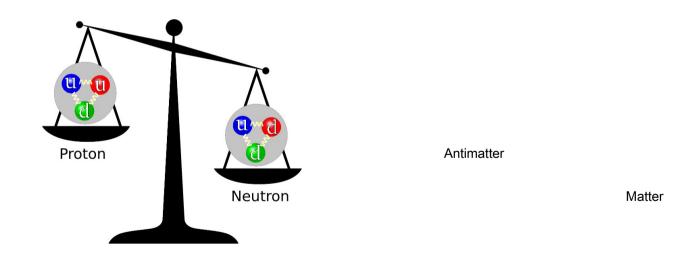
M. Żurek - Symmetries at COSY

Polarimetry – database experiment

dC Cross Ratios

Cross rations for all energies and angles. Satou et al. data scaled for comparison.

What did we learn?


- EDMs of elementary particles key for understanding sources of CP violation
 - → explanation of matter antimatter imbalance
- Principle of experiments measurements of spin precession in magnetic field
- EDM of charged particles measured in storage rings
- COSY: ideal starting point for R&D and a pre-cursor experiment with Wien Filter method

Conclusions

Symmetries:

Tool to address the most striking questions of modern science

Investigations at the Research Center Jülich: From hadronic reactions to EDM with WASA

Backup

Fundamental Discrete Symmetries

A physical model is symmetric under a certain operation

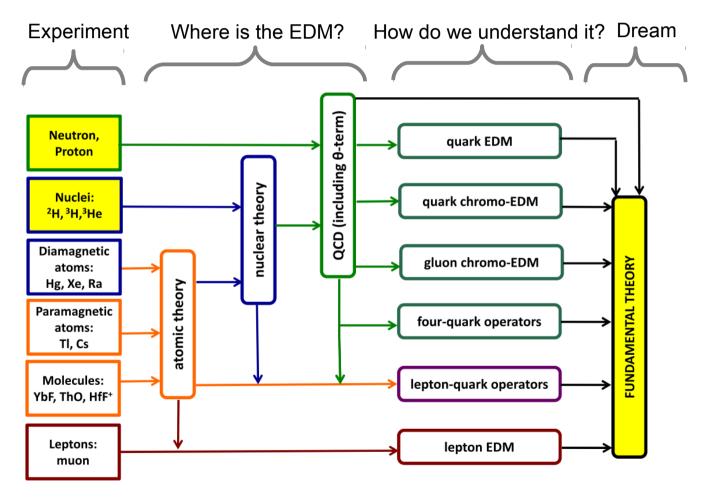
→ if its properties are invariant under this operation

- T-symmetry: $t \rightarrow -t$
- P-symmetry: $\mathbf{r} \rightarrow -\mathbf{r}$
- C-symmetry: particle-antiparticle interchange
- CPT conserved

	С	Р	Т	CP
Electric field E	-E	-E	E	E
Magnetic field B	-B	В	-B	-B
Momentum p	р	-р	-p	-p
Angular momentum I	I	I	-I	I
Charge density q	-q	q	q	-q

EDM – Orders of magnitude

Neutron (udd)				
Charge	е			
$ \mathbf{r_1} - \mathbf{r_2} $	$1 \text{ fm} = 10^{-13} \text{ cm}$			
EDM				
Naive expectation	10 ⁻¹³ e · cm			
Observed (upper limit)	< 3 · 10 ⁻²⁶ e · cm			
SM prediction - Parity violation - CP electroweak violation	~ 10 ⁻³² e · cm			


nEDM of 10 $^{-26}$ e \cdot cm \rightarrow separation of u from d quarks of $\sim 5 \cdot 10^{-26}$ cm

Motivation

Electric Dipole Moment of proton and deuteron

No direct measurement

Disentangle the fundamental source(s) of EDMs

Experimental requirements

High precision storage ring alignment, stability, field homogeneity

High intensity beams $N = 4 \times 10^{10}$ per fill

Polarized hadron beams P = 0.8

Large electric fields E = 10 MV/m

Long spin coherence time $\tau = 1000 \text{ s}$

Polarimetry analyzing power A = 0.6, acc. f = 0.005

$$\sigma_{\rm stat} pprox \frac{1}{\sqrt{Nf}\tau PAE} \implies \sigma_{\rm stat}(1\,{\rm year}) pprox 10^{-29}e{\rm cm}$$

Challenge: systematic uncertainties on the same level!

Even in Pure Electric Ring – lots of sources of syst. uncertainties

→ Very small radial B field can mimic an EDM effect

µB, ~ dE,

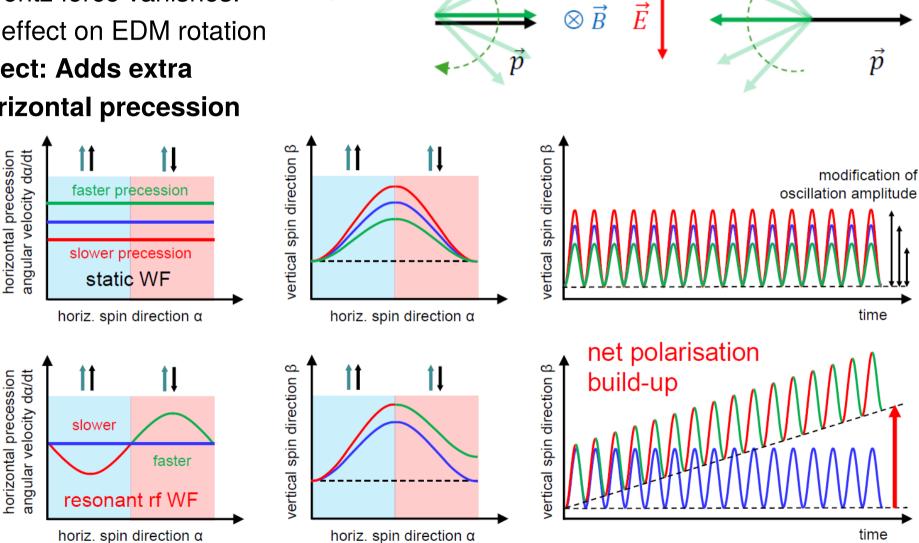
Storage rings: combined ring

magnetic moment

EDM

$$\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S} = -\frac{q}{m_0} \left\{ G\vec{B} + \left(\frac{1}{\gamma^2 - 1} - G \right) \frac{\vec{\beta} \times \vec{E}}{c} + d \frac{m_0}{q\hbar S} (\vec{E} + c\vec{\beta} \times \vec{B}) \right\} \times \vec{S}$$

"frozen spin": proper combination of \vec{B} , \vec{E} and γ also for G < 0 (i.e. deuterons, ³He)

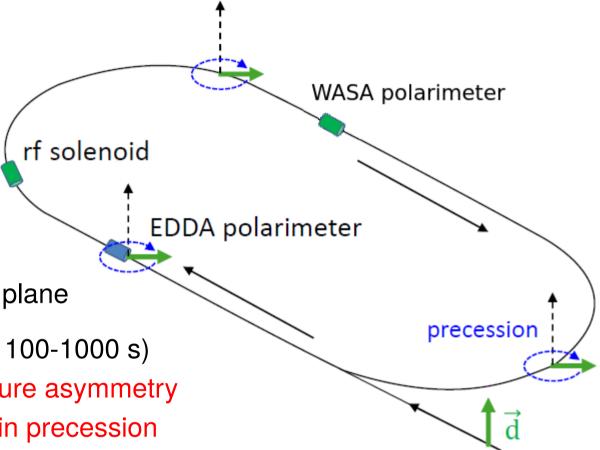

Combined ring both for protons and deuterons

Measurement

Wien Filter method

Lorentz force vanishes: no effect on EDM rotation

Effect: Adds extra horizontal precession

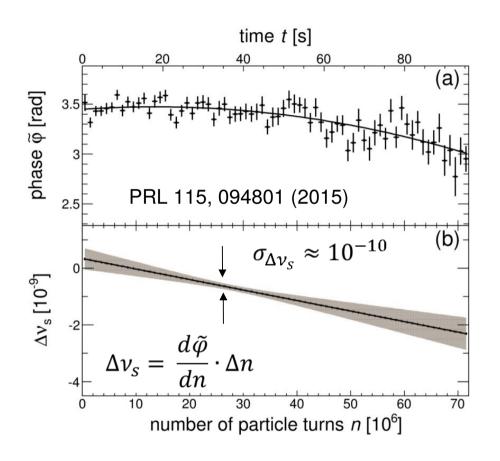


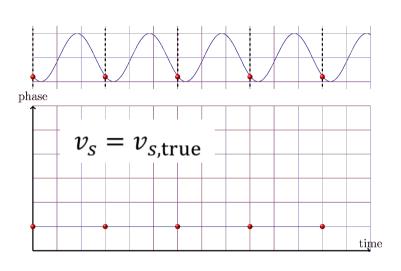
horizontal

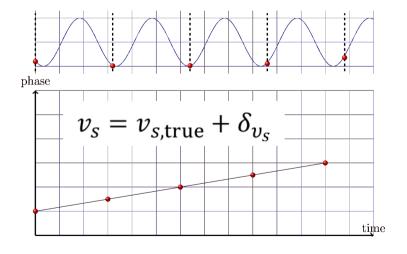
precession

Experimental setup

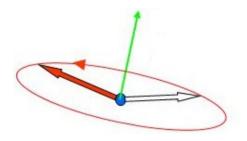
- inject and accelerate vertically polarized deuterons to p=1GeV/c
- 2. bunch and (pre-)cool
- turn spin by means of a RF solenoid into horizontal plane
- extract beam slowly (within 100-1000 s)
 onto a carbon target, measure asymmetry
 and precisely determine spin precession

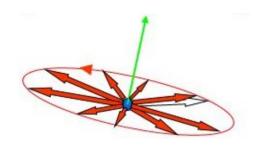



spin tune:


$$|\nu_{s}| = |\gamma G| = \frac{\text{spin precessions}}{\text{particle turn}} = \frac{f_{\text{prec}}}{f_{\text{rev}}} \approx \frac{120 \text{ kHz}}{750 \text{ kHz}} \approx 0.16$$

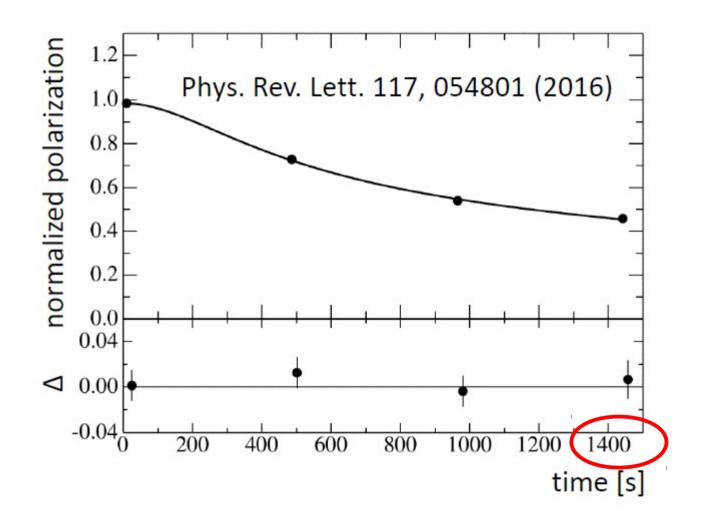
Precise spin tune measurement


Monitoring phase of asymmetry with fixed spin tune



Spin coherence time

At the beginning all spin vectors aligned


After some time spin vectors all out of phase

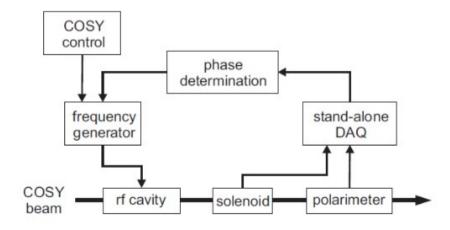
Polarization vanishes → measurement time limited

$$\frac{\Delta \gamma}{\gamma} = \beta^2 \frac{\Delta p}{p} \approx 10^{-4} = \frac{\Delta \nu}{\nu} \implies \Delta \varphi \approx 60 \, \text{rad/s}$$

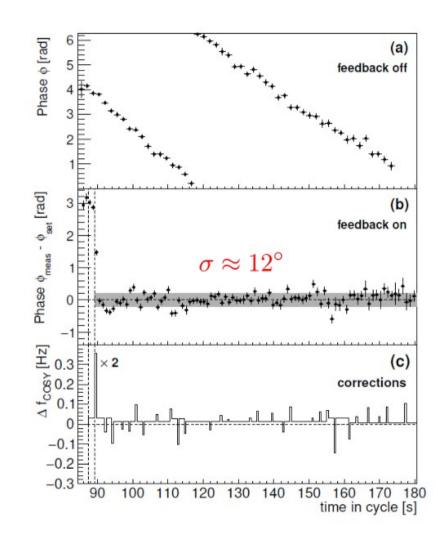
- unbunched beam: $\frac{\Delta \gamma}{\gamma} \approx 10^{-5} \implies \text{decoherence in < 1s}$
- bunching: eliminate effects on $\frac{\Delta p}{p}$ in 1st order $\rightarrow \tau \approx 20 \text{ s}$
- correcting higher order effects using sextupoles and (pre-) cooling $\rightarrow \tau \approx 1000 \text{ s}$

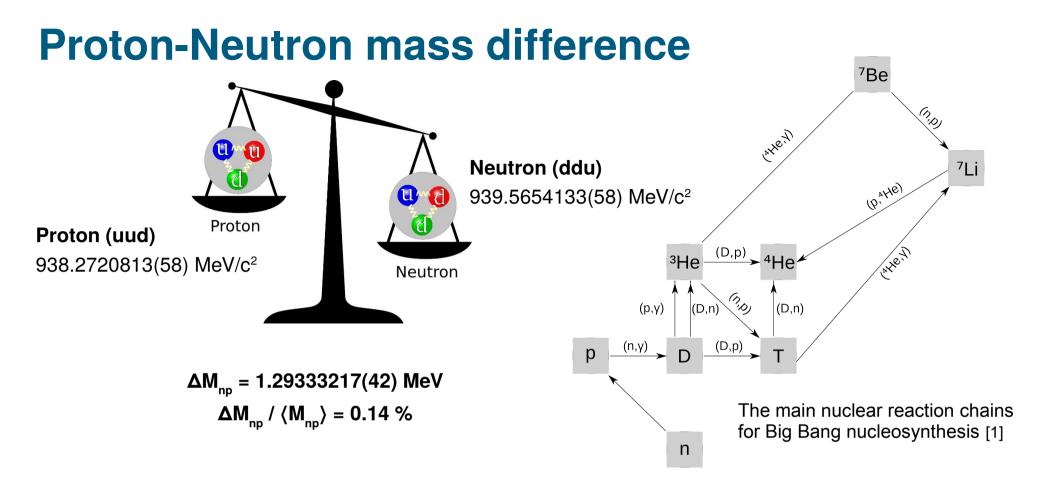
Spin coherence time

Controlling spin direction


Maintain resonance frequency and phase between spin precession and Wien filter

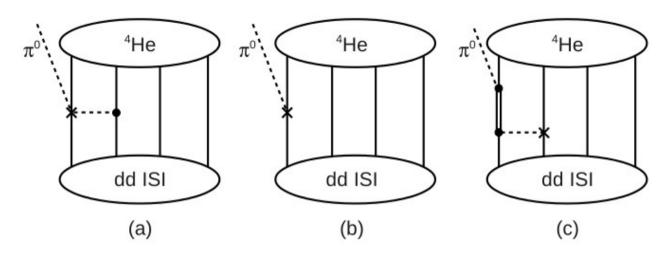
- → keep precession frequency stable
- → match frequency and phase to Wien filter


Test at COSY: control spin tune via COSY rf:

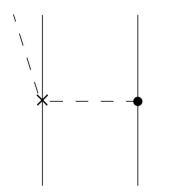

$$\nu_s = G\gamma$$

control phase to external frequency by accelerating/decelerating spin precession

PRL, 119, 014801 (2017)


 ΔM_{np} < 0: hydrogen atoms undergo inverse beta decay \rightarrow predominantly neutrons

 $0 < \Delta M_{np} / \langle M_{np} \rangle < 0.14$ %: at the end of Big Bang Nucleosynthesis (BBN) much more He⁴ and far less hydrogen than in our Universe (n/p ratio after nucleosynthesis would be bigger than 1/7) \rightarrow it would affect stars formation


 ΔM_{np} / $\langle M_{np} \rangle >> 0.14$ %: far fewer neutrons at the end of the BBN \rightarrow the burning of hydrogen in stars and the synthesis of heavy elements more difficult

^[1] https://en.wikipedia.org/wiki/Big Bang nucleosynthesis

Leading diagrams of CSB reactions

Formally leading operators for p-wave pion production in $dd \rightarrow {}^{4}\text{He}\pi^{0}$.

- cross occurrence of CSB
- dot leading order charge invariant vertex
- dashed line pions
- single solid line nucleons
- double solid line Δ

Leading order diagram for the CSB s-wave amplitudes of the $np \rightarrow d\pi^0$ reaction

Differential cross section

Transition matrix M

- 2 identical particles in initial state
 → 3 scalar amplitudes to describe spin dependence: A, B, C
- p_{σ} lie along z-direction $\rightarrow p_{\pi}$ in z-x plane

$$M = A(\epsilon_{1x}\epsilon_{2y} - \epsilon_{1y}\epsilon_{2x}) + Bp_{\pi^0} \sin\theta \cos\theta(\epsilon_{1y}\epsilon_{2z} - \epsilon_{1z}\epsilon_{2y}) - Cp_{\pi^0} \sin\theta(\epsilon_{1z}\epsilon_{2y} - \epsilon_{1y}\epsilon_{2z})$$

2nd deuteron – unpolarized
 Remaining polarization information in density matrix

$$\rho = \sum_{m_2} M^{\dagger} M$$

Trace of density matrix with vector and tensor projection operators and unity matrix

$$I = \frac{2}{3}(|A|^2 + |B|^2 p_{\pi^0}^4 \sin^2 \theta \cos^2 \theta + |C|^2 p_{\pi^0}^2 \sin^2 \theta)$$

- $d d \rightarrow ^{4}He \pi^{0}$ SP: 1+ 1+ 0+ 0
 2S+1L_{J+1}:
- initial final $^{3}P_{0}$ $^{1}S_{0}$ $^{5}D_{1}$ $^{1}P_{1}$ $^{3}P_{1}/^{3}F_{1}$ $^{1}D_{2}$

- C odd waves, A,B even waves (terms ~ C change sign under $p_{\pi} \rightarrow -p_{\pi}$)
- A contains s-wave (survive at threshold)
- Partial wave expansion up to p_{π}^2 : B, C constant, $A = A_0 + A_2 p_{\pi}^2 P_2(\cos\theta)$

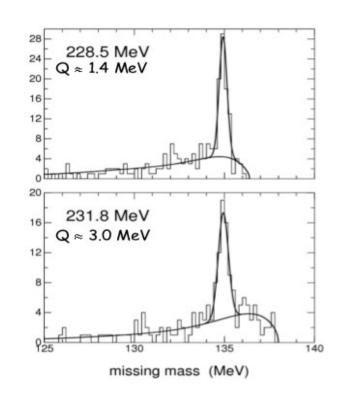
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{2}{3} \frac{p_{\pi^0}}{p_d} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^* A_2\} + |C|^2 p_{\pi^0}^2 \right) + \frac{p_{\pi^0}}{p_d} \left(2p_{\pi^0}^2 \Re\{A_0^* A_2\} - \frac{2}{3} |C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$$

Measurement close to treshold

Measurements of CSB observables

• np→dπ⁰ forward-backward asymmetry A_{fb}

- leading CSB term: πN rescattering
- Opper et al., $A_{fb} = (17.2 \pm 8.0 \pm 5.5) \cdot 10^{-3}$ (PRL 91 (2003) 212302)


Pion production in dd→⁴He π⁰

$$CSC \Rightarrow \sigma = 0$$

$$CSB \Rightarrow \sigma \neq 0, \sigma \propto |M_{CSB}|^2$$

Complementary to np \rightarrow d π^0 :

- different strength of CSB terms
- dd initial state more demanding

Result: Stephenson et al.

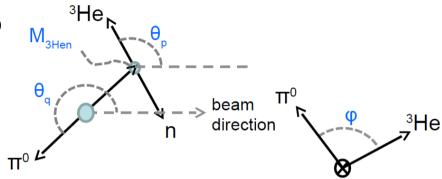
(PRL 91 (142302) 2003)

$$\sigma_{tot}$$
 (Q=1.4 MeV) = 12.7 ± 2.2 pb

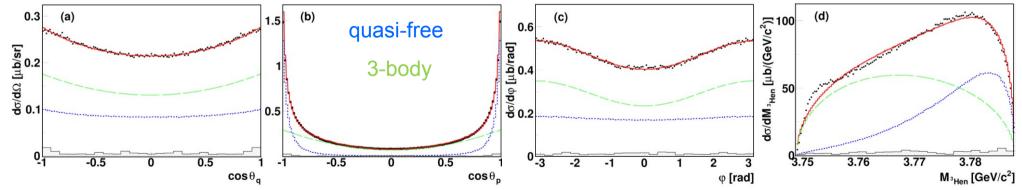
$$\sigma_{tot}$$
 (Q=3.0 MeV) = 15.1 ± 3.1 pb

Result consistent with s-wave production

$dd \rightarrow ^{3} Hen \pi^{0}$ reaction measurement

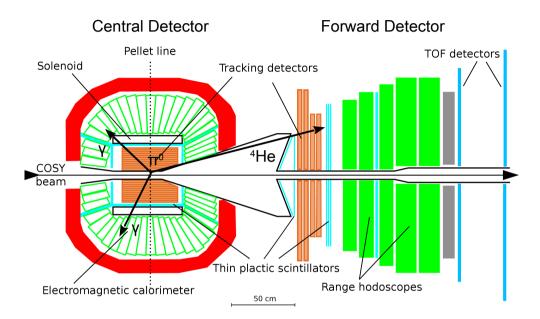

Two-fold model ansatz:

- Quasi-free contribution: $dd \rightarrow {}^{3}He\pi^{0} + n_{spec}$
- Partial waves decomposition of the 3-body final state (limited to L≤1)


full model incoherent sum

$$\sigma_{\text{tot}} = (2.89 \pm 0.01_{\text{stat}} \pm 0.06_{\text{sys}} \pm 0.29_{\text{norm}}) \ \mu \text{b}$$

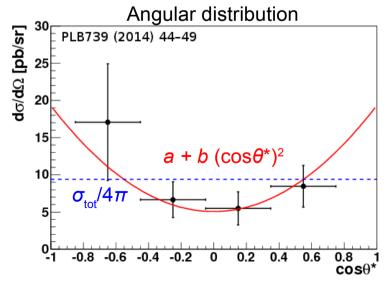
Model used for **simulating** the $dd \rightarrow {}^{3}\text{He}n\pi^{0}$ background and for **normalization**

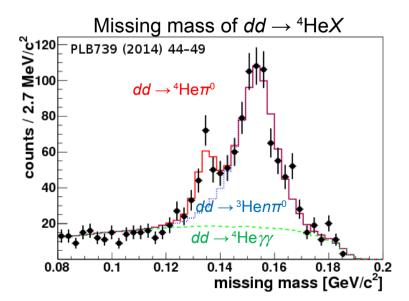

4 independent variables $M_{_{3Hen}}\!,\,\theta_{_{p}}\!,\,\theta_{_{q}}\!,\,\phi$

Phys. Rev. C 88 (2013) 014004

First measurement with WASA

2008: First measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ (2 weeks) at Q = 60 MeV, goal: total cross section




⁴He
$$\pi$$
⁰: $\sigma_{\text{tot}} = (118 \pm 18_{\text{stat}} \pm 13_{\text{sys}} \pm 8_{\text{ext}}) \text{ pb}$

Result consistent with s-wave

Due to **limited statistics** not decisive to identify higher-wave contribution

Parameter **b** of the $d\sigma/d\Omega$ fit $a + b (\cos\theta^*)^2$ consistent with 0

New Experiment with Improved Setup

2014: **10-week-long** beamtime dedicated to measurement of $dd \rightarrow {}^{4}He\pi^{0}$ at Q = 60 MeV with modified detector, goal: angular distribution

Forward Detector Central Detector ⁴He

Background

- $dd \rightarrow (pnd,pnpn,tp) + \pi^0$
- $dd \rightarrow {}^{3}Hen\pi^{0}$ (3·10⁴ higher σ)
- $dd \rightarrow ^{4}He \gamma \gamma$ (physics bg)

Main challenge

 $dd \rightarrow {}^{3}Hen\pi^{0}$ suppression

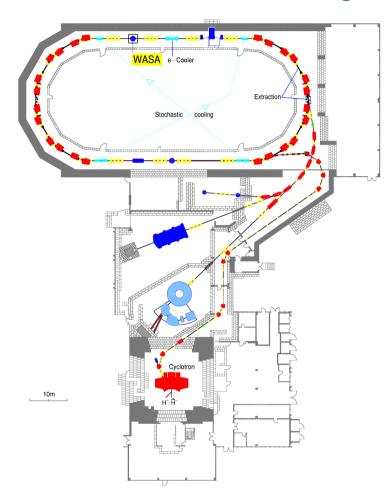
³He/⁴He separation in Forward Detector

Advantages

- → Access to Time-of-Flight (ToF)
 - Better ³He/⁴He separation
 - Independent energy reconstruction

Disadvantages

- → Smaller acceptance
 - Slow ⁴He stops in air before FVH


Challenges

- ToF calibration first time in WASA
- Dropping gain of FWC and FVH

Beamtime summary

- Beam momentum: 1.2 GeV/c²
- Main trigger: high threshold in Forward Detector, ≥1 neutral candidate in Central Detector
- $^{\bullet}$ Integrated luminosity: (35.4 \pm 3.7) pb $^{\text{-}1}$ M. Żurek Symmetries at COSY

Beamtime summary

Beamtime summary

• Beam momentum: 1.2 GeV/c²

Beam kinetic energy: 0.350 GeV

• **Pellet rate**: 1500 – 11000 Hz

 Main trigger: high threshold in Forward Detector, ≥1 neutral candidate in Central Detector

• Integrated luminosity: (35.4 ± 3.7) pb⁻¹

• Average instantaneous luminosity: ~ 6 x 10³⁰ cm⁻² s⁻¹ (6 mb⁻¹ s⁻¹)

• **Deuterons in flat top:** 1.9 – 2.5 x 10¹⁰

• Typical rates in FWC: 4 MHz

• Effective time of measurement: 41 days (989 hours)

• Beamtime length: 65 days

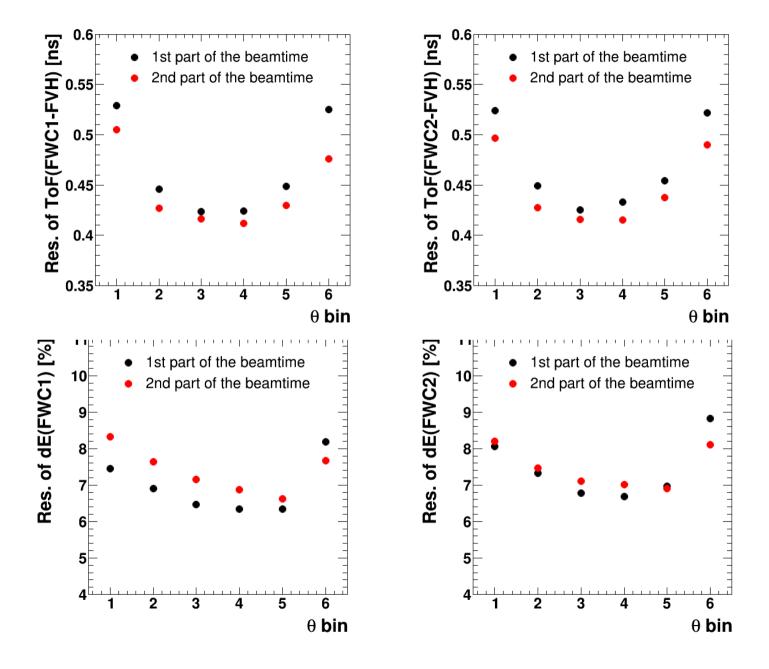
Challenges:

- Problem with blocked target nozzle
- Dropping gain of FWC and FVH

COoler SYnchrotron – General parameters

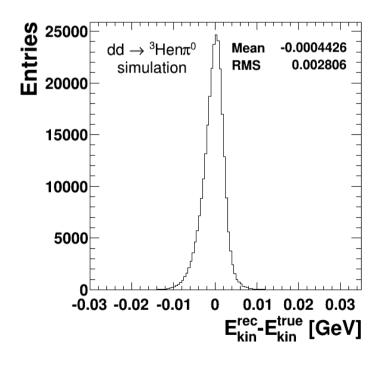
Circumference: 183.5 m

lons: polarized/unpolarized protons and deuterons


Momentum range 300 - 3700 MeV/c

Polarization: up to 75%

Cooling: stochastic and electron (above 1.5 GeV/c)

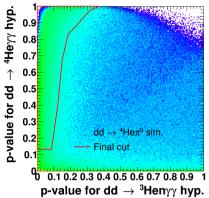

• Momentum resolution $\Delta p/p$: = 10^{-3} (uncooled), 10^{-4} (cooled)

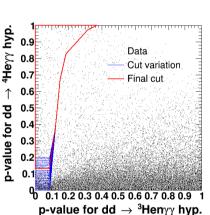
ToF and dE resolution

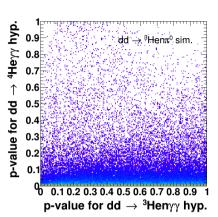
Kinetic energy calibration

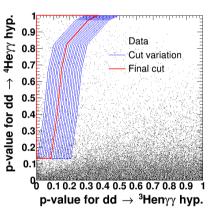
- Minimization of χ^2 : $\chi^2 = \sum_{i=1}^n \frac{(dE_i^{meas} dE(E_{kin})_i)^2}{\sigma_i^2} + \sum_{j=1}^m \frac{\left(\text{TOF}_j^{meas} \text{TOF}(E_{kin})_j\right)^2}{\sigma_j^2}$
- $E_{kin}(ToF_1)$, $E_{kin}(ToF_2)$, $E_{kin}(dE_{FWC1})$, $E_{kin}(dE_{FWC2})$ dependence from MC
- Uncertainties from data (dd → ³Hen used)

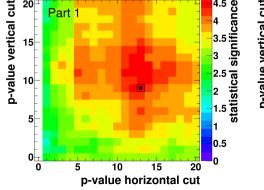
Cuts used in the analysis

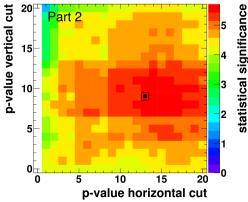

Forward Detector:

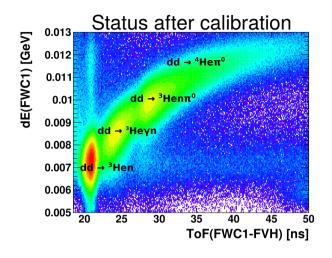

- χ^2 from E_{kin} reconstruction: < 30
- $3^{\circ} < \theta(^{4}\text{He}) < 9^{\circ}$
- p-value cut


Central Detector:


- Type of clusters: neutral
- Number of clusters: 2
- Total energy in cluster: 20 MeV
- Time difference between clusters: 20 s
- Opening angle between clusters: 30°


If there is more than 2 candidates in CD or 1 in FD: the combination with the best χ^2 from the kinematic fit of signal hypothesis taken

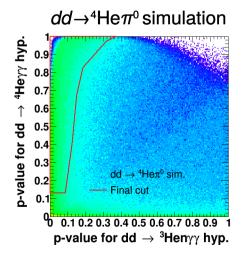


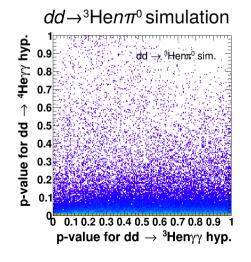


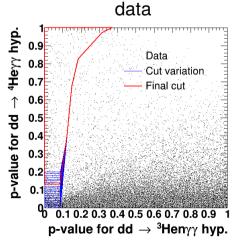
Optimization of the p-value cut: Maximization of the statistical significance R

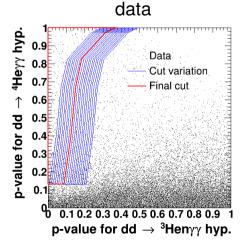
$$R = \frac{S}{\sqrt{S+B}}$$

AnalysisSignal Selection Cuts




- Cuts on ΔE-ΔE not enough for effective suppression of background
- Overall kinematic fit used


$$\chi^2 = \sum_{i=1}^n \left(\frac{\mathbf{v}_i^{\text{meas}} - \mathbf{v}_i^{\text{fit}}}{\sigma_i} \right)^2$$


- Constraint on energy and momentum conservation
- 2 hypotheses fitted: dd → ⁴Heyy and dd → ³Henyy
- Cut on cumulated probability distribution (p-value)
- Optimized to maximal statistical significance of signal peak
- Suppression of $dd \rightarrow {}^{3}Hen\pi^{0}$ more than 10³

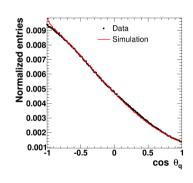
$$p(N, \chi_{\min}^2) = \frac{1}{2^{\frac{N}{2}} \Gamma(\frac{N}{2})} \int_{\chi_{\min}^2}^{\infty} e^{-\frac{t}{2}t^{\frac{N}{2}-1}} dt$$

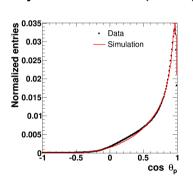
Luminosity calculation from $dd \rightarrow {}^{3}Hen\pi^{0}$

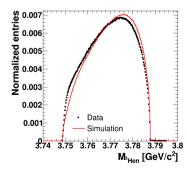
Total cross section

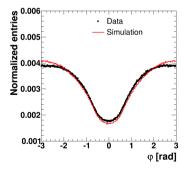
 σ = (2.89 ± 0.01_{stat} ± 0.06_{sys} ± 0.29_{norm}) µb (Phys. Rev. C 88 (2013) 014004)

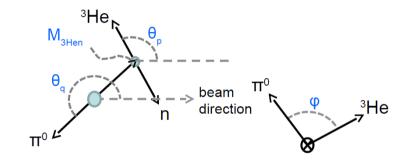
Number of events

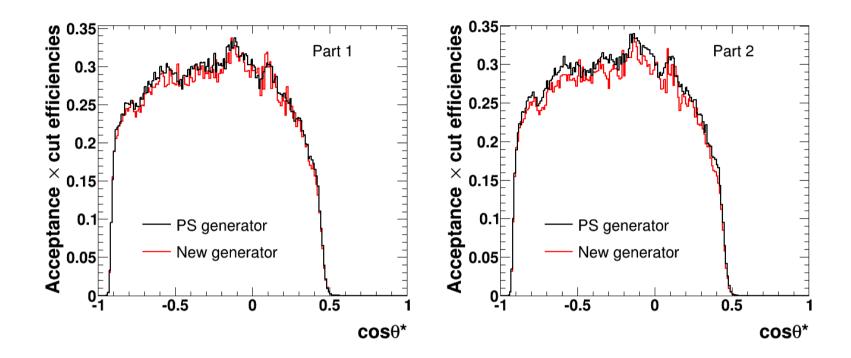

Cuts in the analysis:


- · Loose cut on χ^2 from E_{kin} reconstruction < 30
- · Cut on p-value > 0.5 (see determination of systematic uncertainties)


$$L = \frac{N}{\epsilon \cdot \sigma}$$


Acceptance x cut efficiencies


MC generator obtained in Phys. Rev. C 88 (2013) 014004



	1st part	2nd part
Number of $dd \rightarrow {}^{3}{\rm He}n\pi^{0}$ ev.	5545240	6777114
Acceptance · Cut efficiency	12%	12%
Integrated luminosity	$(16.1 \pm 1.6 (\text{norm.})) \text{ pb}^{-1}$	$(19.6 \pm 2.0 (\text{norm.})) \text{ pb}^{-1}$

 $10^8 dd$ → ³Henπ⁰ events generated

Acceptance

Bin number	Acceptance times cut eff. [%]		
	1st part	2nd part	
1	24.3	24.4	
2	28.5	28.6	
3	30.2	30.1	
4	24.3	24.0	