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Why does the Universe exist as it is?

Isospin symmetry breaking CP symmetry breaking

Stable hydrogen atom Matter-antimatter imbalance

dd →4Heπ0 reaction Electric dipole moment of p,d

Antimatter

Matter
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Isospin symmetry - two sources of violation:
● Electromagnetic interaction (Qu ≠ Qd)
● Strong interaction (Mu ≠ Md)  ↦  window for probing quark mass effects

ΔMnp = ΔMem + ΔMstr

2.05 ± 0.3 MeV [1] 
(ΔMnp –   ΔMem )

Nucleon mass difference

-0.7 ± 0.3 MeV [1] 

Motivation

[1] J. Gasser and H. Leutwyler, Phys. Rept. 87, 77–169 (1982)
[2] S.Weinberg, Trans. New York Acad. Sci. 38, 185–201 (1977)
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Isospin symmetry - two sources of violation:
● Electromagnetic interaction (Qu ≠ Qd)
● Strong interaction (Mu ≠ Md)  ↦  window for probing quark mass effects

Access to ΔMstr from dynamic ISB using Chiral Perturbation Theory
πN scattering length, a(π0p) –  a(π0n) = f(ΔMstr) [2]
However:

 –  No direct measurement of π0N
 –  Large electromagnetic corrections in π±N

ΔMnp = ΔMem + ΔMstr

2.05 ± 0.3 MeV [1] 
(ΔMnp –   ΔMem )

Nucleon mass difference

[1] J. Gasser and H. Leutwyler, Phys. Rept. 87, 77–169 (1982)

-0.7 ± 0.3 MeV [1] 

[2] S.Weinberg, Trans. New York Acad. Sci. 38, 185–201 (1977)

Motivation
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Isospin Symmetry Breaking 
Dominated by pion mass difference Δmπ –  e.m. effect

Charge Symmetry (CS) Breaking 
Symmetry under the operation of                           –   Δmπ does not contribute

Motivation
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[1] Opper et al. PRL 91 (2003) 212302                 [2] Filin et al. Phys. Lett. B681 (2009) 423   
[3] Stephenson et al. PRL 91 (2003) 142302        

Isospin Symmetry Breaking 
Dominated by pion mass difference Δmπ –  e.m. effect

Charge Symmetry (CS) Breaking 
Symmetry under the operation of                           –   Δmπ does not contribute

1. np→dπ0 forward-backward asymmetry Afb [1]
ΔMstr = (1.5 ± 0.8 (exp.) ± 0.5 (th.)) MeV  (LO) [2]

2. dd→4Heπ0

CS  σ = ⇒ 0       CS   ⇒ σ ≠ 0, σ  ∝ |MCSB|2 =  |M1 + M2 + …  |2  
σtot  measured at treshold [3]

Motivation
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Parameter-free prediction of 
the p-wave contribution in dd → 4Heπ0 

[1] Opper et al. PRL 91 (2003) 212302                 [2] Filin et al. Phys. Lett. B681 (2009) 423   
[3] Stephenson et al. PRL 91 (2003) 142302        

Chiral Perturbation
 Theory

Result at threshold 
consistent  with s-wave

Isospin Symmetry Breaking 
Dominated by pion mass difference Δmπ –  e.m. effect

Charge Symmetry (CS) Breaking 
Symmetry under the operation of                           –   Δmπ does not contribute

1. np→dπ0 forward-backward asymmetry Afb [1]
ΔMstr = (1.5 ± 0.8 (exp.) ± 0.5 (th.)) MeV  (LO) [2]

2. dd→4Heπ0

CS  σ = ⇒ 0       CS   ⇒ σ ≠ 0, σ  ∝ |MCSB|2 =  |M1 + M2 + …  |2  
σtot  measured at treshold [3]

Motivation
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WASA-at-COSY Experiment

CSB program with WASA-at-COSY:

2007: Measurement of dd→3Henπ0  
   goal: description of main background, input for initial-state-interaction calculations 
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Not used

WASA-at-COSY Experiment

CSB program with WASA-at-COSY:

2007: Measurement of dd→3Henπ0  
   goal: description of main background, input for initial-state-interaction calculations 

2008: First measurement of dd →4Heπ0  (2 weeks) @ Q = 60 MeV
   goal: σtotal     

Result consistent with s-wave
Due to limited statistics not decisive to identify higher-wave contribution
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WASA-at-COSY Experiment

CSB program with WASA-at-COSY:

2007: Measurement of dd→3Henπ0  
   goal: description of main background, input for initial-state-interaction calculations 

2008: First measurement of dd →4Heπ0  (2 weeks) @ Q = 60 MeV
   goal: σtotal     

2014: New measurement of dd →4Heπ0  (10 weeks) @ Q = 60 MeV with modified detector 
   goal: angular distribution
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Background
● dd→ (pnd,pnpn,tp) + π0

● dd→3Henπ0 (3 10· 5 higher σ)
● dd→4Heγγ (physics bg)
 
Overall kinematic fit 
→ 2 hypotheses fitted:  
dd → 4Heγγ and  dd → 3Henγγ 

→ Optimized cuts on cumulated probability distribution (p-value)
→ Suppresion of dd→3Henπ0  about 104

Status after calibration:

New Experiment with Improved Setup
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ToF Calibration
● Offset adjustment for every FWC and FVH element
● dd → 3Hen time peak position used  
● Calibrate the data to the MC values for every detector 

element as a function of θ

dE Calibration
● Gain adjustment for every FWC element
● Based on ToF

MC: dE [GeV] vs ToF [ns] → dE
GeV

(ToF) 
Data: dE [channels] vs ToF [ns] → dE

ch
(ToF)

→ θ-dependency correction

Kinetic Energy Reconstruction
● Based on Ekin(ToF), Ekin(dE)
● χ 2  fit used to obtain the best matching Ekin

MC

dE[GeV](ToF)

Data

Data

Analysis
Detector Calibration
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● Run-dependent correction for 
every FWC element

● Middle of the beamtime:      
→ high voltage on 
photomultipliers raised

● Separate calibration for both 
datasets

3 weeks laterBeginning of the beamtime

Before correction After correction

● Gain drop from 10% to 25% 
for different FWC elements

● Run-dependent correction 
for the ToF calibration also 
applied

4 weeks 4 weeks

Analysis
Detector Calibration
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Full angular range 
within detector acceptance Four angular bins

● Luminosity determination using dd→3Henπ0, normalization to the σ from the previous 
measurement (Phys. Rev. C 88 (2013) 014004)

● Acceptance correction: 1st assuming uniform angular distribution for the signal, then using 
measured angular distribution  

Results
Missing mass of dd → 4HeX

Bin 1

Bin 3

Bin 2

Bin 4
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Common systematic uncertainty of 10% from 
external normalization

Identical particles in the initial state 
→ forward-backward symmetric cross section

                                       fit result:

Results
Differential cross section
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Common systematic uncertainty of 10% from 
external normalization

Identical particles in the initial state 
→ forward-backward symmetric cross section

                                       fit result:

 Considering only s- and p-waves [1]:

● p-waves contribute with a negative sign → maximum at 90o in angular distribution
● Observed minimum at 90o → explained only with d-waves in the final state

Data establish for the first time presence of sizable contribution of d-waves

p-wave

[1] A. Wronska et al., Eur. Phys. J. A26, 421 (2005).     

Results
Differential cross section
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s-d interferences-wave d-wave

d-wave

p-wave

Full fit with 4 amplitudes and 1 relative phase δ (between A0 and A2)
→ outside the scope of the presented data
 

Including d-waves, terms up to fourth order in pion momentum has to be considered:

Quantitative results 
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s-d interferences-wave d-wave

d-wave

p-wave

Full fit with 4 amplitudes and 1 relative phase δ (between A0 and A2)
→ outside the scope of the presented data
 

Quantitative results - only using additional constraints:
1)Assuming that amplitudes do not carry any momentum dependence: A0 = Athr from [1]
2)Systematic check of the fit → B – fixed to 0, phase δ – fixed to 0

Including d-waves, terms up to fourth order in pion momentum has to be considered:

[1] Stephenson et al. PRL 91 (2003) 142302 

Quantitative results 



12.02.2018 M. Żurek - Symmetries at COSY 20

s-d interferences-wave d-wave

d-wave

p-wave

A0 = Athr from [1], B –  fixed to 0, phase δ – fixed to 0

Including d-waves, terms up to fourth order in pion momentum has to be considered:

[1] Stephenson et al. PRL 91 (2003) 142302 

Quantitative results 
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s-d interferences-wave d-wave

d-wave

p-wave

A0 = Athr from [1], B –  fixed to 0, phase δ – fixed to 0

Including d-waves, terms up to fourth order in pion momentum has to be considered:

[1] Stephenson et al. PRL 91 (2003) 142302 

Momentum dependence of total cross section

Obtained total cross section:

Quantitative results 
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● First measurement of contributions of higher partial waves in the 
charge symmetry breaking reaction dd → 4Heπ0

● Angular distribution with a minimum at θ*= 90o can be understood only 
by the presence of a significant d-wave contribution in the final state

● Data are consistent with vanishing p-wave contribution

Role of the Δ isobar ?

● Deep insights not only into the dynamics of the nucleon-nucleon 
interaction but also the role of quark masses in hadron dynamic

What did we learn? 
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Preconditions needed to explain it:

● Baryon number violation
● C and CP violation
● Thermal non-equilibrium in the early Universe

Sakharov (1967)

       

Motivation
Baryon Asymmetry Problem
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● Electroweak sector (CKM matrix well established)
→ First observation: 1964 - decay of the neutral K meson

● Strong Interactions (so called θ-term)
→ Not observed experimentally yet (it is very small)
→ Strong CP puzzle 

↓
Predictions orders of magnitude too small to explain the 

observed matter-antimatter asymmetry!

New sources of CP violation Beyond Standard Model needed!

They can manifest in EDM of particles

Motivation
Baryon Asymmetry Problem
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Classically 

● Charge x displacement 

In Quantum Mechanics 

Operator d = qr

Only available quantization axis is the spin s = sσ 
(there can be only one vector in a quantum system)

d = dσ
● d || σ and μ || σ (magnetic moment)

r

Motivation
Electric Dipole Moment

μ – magnetic dipole moment 
d – electric dipole moment 
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The observable quantity: 
● Energy of electric dipole in electric field 
● Energy of magnetic dipole in magnetic field 

H = H
E
 + H

M 
= - μσ · B - dσ · E

T: H = - μσ · B + dσ · E
P: H = - μσ · B + dσ · E

Motivation
Electric Dipole Moment

T violation → CP violation 
(since CPT conserved)

μ – magnetic dipole moment 
d – electric dipole moment 
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Upper limits



12.02.2018 M. Żurek - Symmetries at COSY 29

Upper limits
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For charged particles: 
→ apply electric field in a storage ring

Simplified case:

Build-up of vertical polarization 
by slow precession

 

 

“Frozen spin” 

Extremely small effects!

With edm ~ 10-29 e·cm
effect of the order of 

μdeg/hour

Measurement principle
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Thomas-BMT equation:

In storage rings (magnetic field – vertical, electric field - radial) 

Magnetic moment causes fast spin precession in horizontal plane 
Ω: angular precession frequency d: electric dipole moment

G: anomalous magnetic moment γ: Lorentz factor

Measurement principle
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magnetic moment EDM 

„frozen spin“ : precession vanishes at magic momentum

only possible for 

 

 

Dedicated ring for protons

Measurement
Pure electric ring
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Starting point for a proof-of-principle experiment

Measurement
Pure magnetic ring
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E* field tilts spin due to EDM 
50% of time up and 
50% of time down

Measurement
Pure magnetic ring



12.02.2018 M. Żurek - Symmetries at COSY 35

Lorentz force vanishes: no effect on EDM rotation
Effect: Adds extra horizontal precession

Measurement
RF Wien Filter method
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EDMs of charged hadrons: p, d
 
R&D with deuterons
p = 1 GeV/c
G = -0.14256177(72)
νs ≈ -0.161  →  f ≈ 120 kHz

Research and Development at COSY
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Precise measurement of the precession frequency (spin tune)
→ also time dependent within one cycle

Research and Development at COSY

Phys. Rev. Lett. 115, 094801 (2015)

 

 



12.02.2018 M. Żurek - Symmetries at COSY 38

Maximizing the spin coherence time (goal: ≈1000 s)

Research and Development at COSY
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Maintaining the spin direction
→ keep precession frequency stable
→ match frequency and phase to Wien filter radio frequency

Research and Development at COSY
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x
y

z

EDDA
detector

9°-13°

Reaction: dC elastic scattering  

Up/Down asymmetry     horizontal component of polarization P∝ x

Right/Left asymmetry    vertical component of polarization P∝ y

Polarimetry
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Polarimetry
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Polarimetry
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Polarimetry
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Motivation: database to produce realistic 
Monte Carlo simulations of detector responses 
for a polarimeter designed for EDM

Goal: A
y
, A

yy
, dσ/dΩ  for

→ dC elastic scattering 
→ main background reactions (deuteron breakup)

Beamtime in November 2016 (2 weeks)

d energies: 170, 200, 235, 270,
 300, 340, 380 MeV
Targets: C and CH

2

Beam polarization: 5 polarization states
(P

y
,P

yy
) = (0,0), (-⅔,0), (⅔,0), (½, -½), (-1, 1)

Setup: Modified WASA Forward Detector

(P
y
,P

yy
)

Polarimetry – database experiment
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→ Full φ coverage
→ θ range 4° - 17°

Polarimetry – database experiment
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Preliminary

Cross rations for all energies and angles. Satou et al. data scaled for comparison.

Polarimetry – database experiment
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● EDMs of elementary particles key for understanding 
sources of CP violation 
→ explanation of matter –  antimatter imbalance 

● Principle of experiments –  measurements of spin 
precession in magnetic field

● EDM of charged particles measured in storage rings

● COSY: ideal starting point for R&D and a pre-cursor 
experiment with Wien Filter method

What did we learn? 
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Conclusions 

Antimatter

Matter

Symmetries: 
Tool to address the most striking questions of modern science

Investigations at the Research Center Jülich:
From hadronic reactions to EDM with WASA
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Backup
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Fundamental Discrete Symmetries

A physical model is symmetric under a certain operation 
→ if its properties are invariant under this operation

● T-symmetry: t → -t
● P-symmetry: r → -r
● C-symmetry: particle-antiparticle interchange
● CPT conserved

C P T CP

Electric field E -E -E E E

Magnetic field B -B B -B -B

Momentum p p -p -p -p

Angular momentum l l l -l l

Charge density q -q q q -q
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EDM – Orders of magnitude

Neutron (udd)
Charge e
| r

1 
– r

2
 | 1 fm = 10 -13 cm

EDM
Naive expectation 10 -13 e · cm

Observed (upper limit) < 3 · 10 -26 e · cm

SM prediction
- Parity violation
- CP electroweak violation

~ 10 -32 e · cm

nEDM of 10 -26 e · cm →  separation of u from d quarks of ~ 5 · 10 -26  cm
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No direct measurement
Disentangle the fundamental source(s) of EDMs

Experiment Where is the EDM? How do we understand it? Dream

Motivation
Electric Dipole Moment of proton and deuteron
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High precision storage ring alignment, stability, field homogeneity
High intensity beams N = 4 x 1010 per fill

Polarized hadron beams P = 0.8

Large electric fields E = 10 MV/m

Long spin coherence time τ = 1000 s

Polarimetry analyzing power A = 0.6, acc. f = 0.005

Experimental requirements

 

Even in Pure Electric Ring – lots of sources of syst. uncertainties
→ Very small radial B field can mimic an EDM effect

μB
r 
~ dE

r

 

Challenge: systematic uncertainties on the same level!



12.02.2018 M. Żurek - Symmetries at COSY 56

 

Storage rings: combined ring

Combined ring both for protons and deuterons
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Lorentz force vanishes:
no effect on EDM rotation
Effect: Adds extra 
horizontal precession

Measurement
Wien Filter method
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1. inject and accelerate 
vertically polarized 
deuterons to p=1GeV/c

2. bunch and (pre-)cool 

3. turn spin by means of a 
RF solenoid into horizontal plane

4. extract beam slowly (within 100-1000 s) 
onto a carbon target, measure asymmetry 
and precisely determine spin precession

spin tune:  

Experimental setup
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Precise spin tune measurement

 

 

Monitoring phase of asymmetry with fixed spin tune

 

PRL 115, 094801 (2015)

 

 



12.02.2018 M. Żurek - Symmetries at COSY 60

Spin coherence time

At the beginning all spin vectors aligned After some time spin vectors all out of phase 

Polarization vanishes → measurement time limited
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Spin coherence time
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Controlling spin direction

Maintain resonance frequency and phase between spin precession and Wien filter

→ keep precession frequency stable
→ match frequency and phase to Wien filter

PRL, 119, 014801 (2017)

Test at COSY:
control spin tune via COSY rf: 

control phase to external frequency 
by accelerating/decelerating spin precession
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Proton-Neutron mass difference 

Neutron (ddu)
939.5654133(58) MeV/c2

ΔMnp = 1.29333217(42) MeV
ΔMnp / 〈Mnp〉 = 0.14 %

Proton (uud) 
938.2720813(58) MeV/c2

ΔM
np 

< 0: hydrogen atoms undergo inverse beta decay → predominantly neutrons

0 < ΔM
np

 / 〈M
np

〉 < 0.14 %: at the end of Big Bang Nucleosynthesis (BBN) much more He4 and far less 
hydrogen than in our Universe (n/p ratio after nucleosynhtesis would be bigger than 1/7) → it would affect 
stars formation

ΔM
np

 / 〈M
np

〉 >> 0.14 %: far fewer neutrons at the end of the BBN → the burning of hydrogen in stars and 
the synthesis of heavy elements more difficult

The main nuclear reaction chains 
for Big Bang nucleosynthesis [1]

[1] https://en.wikipedia.org/wiki/Big_Bang_nucleosynthesis
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Leading diagrams of CSB reactions

Formally leading operators for p-wave pion production in dd →4Heπ0.

● cross –  occurrence of CSB
● dot –  leading order charge 

invariant vertex
● dashed line –  pions
● single solid line – nucleons
● double solid line – Δ

Leading order diagram for the CSB s-wave amplitudes of the np→dπ0 reaction
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Differential cross section

Transition matrix M 
●  2 identical particles in initial state 

→ 3 scalar amplitudes to describe spin dependence: A, B, C
● p

d
 lie along z-direction → p

π
 in z-x plane

● 2nd deuteron – unpolarized
Remaining polarization information in density matrix

● Trace of density matrix with vector and tensor 
projection operators and unity matrix

● C – odd waves,  A,B – even waves (terms ~ C change sign under p
π 
→ - p

π
)

● A – contains s-wave (survive at threshold)
● Partial wave expansion up to p

π
2: B, C – constant, A = A

0
 + A

2
p

π
2P

2
(cosθ)

     d  d →4He π0

SP:  1+   1+               0+    0-

initial final
3P

0
1S

0

5D
1

1P
1

3P
1
/3F

1
1D

2

2S+1L
J+1

:
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Measurement close to treshold

Measurements of CSB observables

np→dπ0 forward-backward asymmetry Afb

leading CSB term: πN rescattering
Opper et al., Afb = (17.2 ± 8.0 ± 5.5) ∙ 10 -3 

     (PRL 91 (2003) 212302)

Pion production in dd→4He π0

CSC ⇒ σ = 0

CSB ⇒  σ ≠ 0, σ ∝ |MCSB|2

Complementary to np→dπ0:
different strength of CSB terms
dd initial state more demanding

Result: Stephenson et al. 
     (PRL 91 (142302) 2003)

σtot (Q=1.4 MeV) = 12.7 ± 2.2 pb

σtot (Q=3.0 MeV) = 15.1 ± 3.1 pb

Result consistent with s-wave production
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Two-fold model ansatz:
● Quasi-free contribution: dd → 3Heπ0 + n

spec 

● Partial waves decomposition of the 3-body final state (limited to L≤1)

Phys. Rev. C 88 (2013) 014004

full model 
incoherent sum

quasi-free

3-body

σ
tot

 = (2.89 ± 0.01
stat

 ± 0.06
sys

 ± 0.29
norm

) µb

Model used for simulating 
the dd → 3Henπ0 background 

and for normalization

4 independent variables M
3Hen

, θ
p
, θ

q
, φ

dd→3Henπ0 reaction measurement
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First measurement with WASA
2008: First measurement of dd →4Heπ0  (2 weeks) at Q = 60 MeV, goal: total cross section

σ
tot

/4π

a + b (cosθ*)2

dd → 3Henπ0

dd → 4Heγγ

dd → 4Heπ0

Angular distribution Missing mass of dd → 4HeX

4Heπ0: σ
tot

 = (118 ± 18
stat

 ± 13
sys

 ± 8
ext

) pb

Result consistent with s-wave

Due to limited statistics not decisive 
to identify higher-wave contribution

 Parameter b of the dσ/dΩ fit a + b (cosθ*)2 

consistent with 0

Central Detector Forward Detector

4Heγ

γ

π0
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Background
● dd→ (pnd,pnpn,tp) + π0

● dd→3Henπ0 (3 10· 4 higher σ)
● dd→4Heγγ (physics bg)

Main challenge
dd→3Henπ0 suppression

↓
3He/4He separation in Forward Detector
 

2014: 10-week-long beamtime dedicated to measurement of dd →4Heπ0  at Q = 60 MeV 
          with modified detector, goal: angular distribution

Advantages
→ Access to Time-of-Flight (ToF)

● Better 3He/4He separation
● Independent energy reconstruction

Beamtime summary
● Beam momentum: 1.2 GeV/c2

● Main trigger: high threshold in Forward Detector, 
≥ 1 neutral candidate in Central Detector

● Integrated luminosity: (35.4 ± 3.7) pb-1

New Experiment with Improved Setup

4Heγ

γ

π0

Disadvantages
→ Smaller acceptance 

● Slow 4He stops in air before FVH

Challenges
● ToF calibration first time in WASA 
● Dropping gain of FWC and FVH 

Central Detector Forward Detector
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Beamtime summary
Beamtime summary

● Beam momentum: 1.2 GeV/c2

● Beam kinetic energy: 0.350 GeV
● Pellet rate: 1500 – 11000 Hz
● Main trigger: high threshold in Forward Detector, ≥1 

neutral candidate in Central Detector
● Integrated luminosity: (35.4 ± 3.7) pb-1

● Average instantaneous luminosity: ~ 6 x 1030 cm-2 s-1 
(6 mb-1 s-1)

● Deuterons in flat top: 1.9 – 2.5 x 1010

● Typical rates in FWC: 4 MHz
● Effective time of measurement: 41 days (989 hours)
● Beamtime length: 65 days

Challenges:
● Problem with blocked target nozzle 
● Dropping gain of FWC and FVH 

COoler SYnchrotron – General parameters
● Circumference: 183.5 m
● Ions: polarized/unpolarized protons and deuterons
● Momentum range 300 - 3700 MeV/c
● Polarization: up to 75%
● Cooling: stochastic and electron (above 1.5 GeV/c)
● Momentum resolution Δp/p: = 10-3 (uncooled), 10-4 (cooled)
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ToF and dE resolution
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Kinetic energy calibration

● Minimization of χ2 :

● Ekin(ToF1), Ekin(ToF2), Ekin(dEFWC1), Ekin(dEFWC2) dependence from MC

● Uncertainties from data (dd → 3Hen used)
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Cuts used in the analysis

Forward Detector: 
● χ2 from E

kin 
reconstruction: < 30

● 3O < θ(4He) < 9O

● p-value cut

Central Detector:
● Type of clusters:  neutral
● Number of clusters: 2
● Total energy in cluster: 20 MeV
● Time difference between clusters: 20 s
● Opening angle between clusters: 30O

If there is more than 2 candidates in CD or 1 in FD:  
the combination with the best χ2 from the kinematic 
fit of signal hypothesis taken 

Optimization of the p-value cut:
Maximization of the statistical significance R 
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Status after calibration
● Cuts on ΔE-ΔE not enough for effective suppression of background
● Overall kinematic fit used

● Constraint on energy and momentum conservation
● 2 hypotheses fitted:  dd → 4Heγγ and  dd → 3Henγγ

● Cut on cumulated probability distribution (p-value)
● Optimized to maximal statistical significance of signal peak 
● Suppression of dd→3Henπ0  more than 103

dd→4Heπ0 simulation dd→3Henπ0 simulationdd→4Heπ0 simulation data data

Analysis
Signal Selection Cuts
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Luminosity calculation from dd→3Henπ0  
Total cross section
σ = (2.89 ± 0.01

stat
 ± 0.06

sys
 ± 0.29

norm
) µb (Phys. Rev. C 88 (2013) 014004)

Number of events
Cuts in the analysis:
• Loose cut on χ2 from E

kin
 reconstruction < 30

• Cut on p-value > 0.5 (see determination of systematic uncertainties)

Acceptance x cut efficiencies
MC generator obtained in Phys. Rev. C 88 (2013) 014004

108 dd→3Henπ0 events generated
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Acceptance
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