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We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice

directly at Q2 ¼ 0. This is based on the Rome method for computing momentum derivatives of quark

propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius

as well as the isovector induced pseudoscalar form factor at Q2 ¼ 0 and the axial radius. For comparison,

we also determine these quantities with the traditional approach of computing the corresponding form

factors, i.e. Gv
EðQ2Þ and Gv

MðQ2Þ for the case of the vector current and Gv
PðQ2Þ and Gv

AðQ2Þ for the axial
current, at multiple Q2 values followed by z-expansion fits. We perform our calculations at the physical

pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state

contamination, the calculations were done at three source-sink separations and the summation method

was used. The derivative method produces results consistent with those from the traditional approach but

with larger statistical uncertainties especially for the isovector charge and axial radii.

DOI: 10.1103/PhysRevD.97.034504

I. INTRODUCTION

The experimental determinations of the proton (electric)

charge radius r
p
E have a discrepancy greater than 5-sigma

between the value determined from spectroscopy of muonic

hydrogen [1,2] and the CODATA average [3] of exper-

imental results obtained from hydrogen spectroscopy and

electron-proton scattering. This presently unresolved “pro-

ton radius puzzle” is the focus of various theoretical and

experimental efforts.
1
Last year, the CREMACollaboration

reported on their study of muonic deuterium [5]. Their
experiment corroborates the muonic hydrogen result for
the proton charge radius, while finding a similar 6-sigma
discrepancy for the deuteron charge radius with the
CODATAvalues, and a 3.5-sigma discrepancy to electronic
deuterium spectroscopy results [6]. Thus, having a reliable
ab initio calculation of the proton charge radius is a highly
attractive goal for practitioners of lattice QCD.
The conventional approach for determining quantities

like the charge radius on the lattice involves the compu-
tation of form factors at several different discrete values
of the initial and final momenta, p⃗ and p⃗0, that are allowed
by the periodic boundary conditions, followed by a large

extrapolation to zero momentum transfer Q2 ¼ 0. This
introduces a source of systematic uncertainty, analogous to
the systematic uncertainty associated with the choices of

the fit ansatz and range of Q2 in extracting the proton
charge radius from electron-proton scattering data.
Systematic errors of this kind have in fact been proposed
as a possible explanation of the radius puzzle [7–9]. Given

that the smallest nonzero value of Q2 accessible on the
largest available lattices is still an order of magnitude
higher than in scattering experiments [10], a lattice method
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1
Interestingly, a recent result of the proton charge radius

obtained by Beyer et al. using spectroscopic measurements of
regular hydrogen has been found to be consistent with the result
of the muonic hydrogen experiment [4].
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for computing r
p
E and similar observables directly at

Q2 ¼ 0 without the need of a shape fit is highly desirable.

The Rome method, presented in Ref. [11], provides a

way to calculate the momentum derivatives of quark

propagators on the lattice at zero momentum. This enables

calculating the momentum derivatives of the correlation

functions at zero momentum and obtaining the form factors

and their momentum derivatives at vanishing momenta. To

this end, one introduces twisted boundary conditions and

takes the symbolic derivative(s) with respect to the twist

angle (at zero twist angle) before the numerical evaluation

of the path integral over the gauge fields.

For the case of a pion, it was shown in Ref. [12] that the

Rome method for momentum derivatives could be used

to calculate the pion charge radius with finite-volume

effects that are exponentially suppressed, with asymptotic

behavior ∼
ffiffiffiffiffiffiffiffiffi
mπL

p
e−mπL.

We employ the Rome method for extracting the proton

isovector charge radius ðr2EÞv and the isovector magnetic

moment μv ¼ Gv
Mð0Þ, from matrix elements of the vector

current. We also extract the proton axial radius ðr2AÞv and

the induced pseudoscalar form factor at zero momentum,

Gv
Pð0Þ, using nucleon matrix elements of the axial current.

We compare the results from the derivative method with

those from the traditional approach.

The outline of the paper is as follows. We start by

reviewing the electromagnetic and axial form factors in

Sec. II. Section III is devoted to describing the traditional

approach for isolating the nucleon ground state, extracting

the nucleon electromagnetic and axial form factors and the

fits to the Q2 dependence of the form factors using the z
expansion to determine the corresponding radii and form

factors at Q2 ¼ 0. Section IV explains in detail the

derivative method for computing the momentum deriva-

tives of matrix elements atQ2 ¼ 0 using the Rome method,

which we use to determine the charge and axial radii in

addition to the magnetic and induced pseudoscalar form

factors directly at Q2 ¼ 0. In Sec. V, we describe the lattice

methodology and the ensemble of configurations that are

used. Finally, in Sec. VI, we present our numerical results

computed directly at Q2 ¼ 0 and compare them with the

traditional approach. We give our conclusions in Sec. VII.

II. DEFINITIONS OF THE FORM FACTORS

The nucleon matrix elements can be parametrized in

terms of nucleon form factors as

hp⃗0; λ0jOq;μ
X jp⃗; λi ¼ ūðp⃗0; λ0ÞF q;μ

X ðp⃗; p⃗0Þuðp⃗; λÞ; ð1Þ

where p⃗, p⃗0 are the initial and final nucleon momenta, λ, λ0

label the different polarization states, and u is the nucleon

spinor. We are defining the form factors using a current of

flavor q in a proton and jp⃗; λi is a proton state. O
q;μ
X refers

to either the vector (X ¼ V) or the axial (X ¼ A) current.

For the case of the vector current, O
q;μ
V ¼ q̄γμq,

F
q;μ
V ðp⃗; p⃗0Þ can be written in terms of the Dirac and

Pauli form factors, F
q
1ðQ2Þ and F

q
2ðQ2Þ, in Minkowski

space as

F
q;μ
V ðp⃗; p⃗0Þ ¼ γμF

q
1ðQ2Þ þ iσμνðp0 − pÞν

2m
F
q
2ðQ2Þ; ð2Þ

where m is the nucleon mass and Q2 ¼ −ðp0 − pÞ2 ≥ 0 is

the momentum transfer. These form factors can also be

expressed in terms of the nucleon electric GEðQ2Þ and

magnetic GMðQ2Þ Sachs form factors via

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
F2ðQ2Þ; ð3Þ

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: ð4Þ

The charge and magnetic radii, r2E;M, and the magnetic

moment, μ, are defined from the behavior of GE;MðQ2Þ
near Q2 ¼ 0:

G
q
EðQ2Þ ¼ 1 −

1

6
ðr2EÞqQ2 þOðQ4Þ; ð5Þ

G
q
MðQ2Þ ¼ μqð1 − 1

6
ðr2MÞqQ2 þOðQ4ÞÞ: ð6Þ

For the axial vector current, O
q;μ
A ¼ q̄γμγ5q, F

q;μ
A ðp⃗; p⃗0Þ

can be expressed in terms of the axial and induced

pseudoscalar form factors, G
q
AðQ2Þ and G

q
PðQ2Þ, as

F
q;μ
A ðp⃗; p⃗0Þ ¼ γμγ5G

q
AðQ2Þ þ γ5

ðp0 − pÞμ
2m

G
q
PðQ2Þ: ð7Þ

The axial form factor admits the following expansion for

small momentum transfer

G
q
AðQ2Þ ¼ g

q
A

�

1 −
1

6
ðr2AÞqQ2 þOðQ4Þ

�

; ð8Þ

where g
q
A is the axial-vector coupling constant and r

q
A is the

axial radius.

In this work, we are considering the isovector electro-

magnetic Sachs form factors which parametrize the matrix

elements of the u − d flavor combination between proton

states and, neglecting the isospin breaking effects, are

equivalent to the difference between the form factors of

the electromagnetic current V
μ
em ¼ 2

3
ūγμu − 1

3
d̄γμd in a

proton and in a neutron, G
p;n
E;MðQ2Þ,

Gv
E;MðQ2Þ ¼ G

p
E;MðQ2Þ −Gn

E;MðQ2Þ
¼ Gu

E;MðQ2Þ −Gd
E;MðQ2Þ≡ Gu−d

E;MðQ2Þ: ð9Þ
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The isovector axial form factors Gv
A;PðQ2Þ are defined in a

similar way.

III. COMPUTATION OF MATRIX ELEMENTS

USING THE TRADITIONAL METHOD

For determining the nucleon matrix elements in lattice

QCD, we compute the nucleon two-point and three-point

functions,

C2ðp⃗; tÞ ¼
X

x⃗

e−ip⃗ x⃗
X

αβ

½ðΓpolÞαβhχβðx⃗; tÞχ̄αð0Þi�; ð10Þ

C
O

q;μ

X

3 ðp⃗; p⃗0; τ; TÞ
¼

X

x⃗;y⃗

e−ip⃗
0x⃗eiðp⃗

0−p⃗Þy⃗
X

αβ

½ðΓpolÞαβhχβðx⃗; TÞ

×O
q;μ
X ðy⃗; τÞχ̄αð0Þi�: ð11Þ

In this section, we use Minkowski-space gamma matrices.

Above, χ ¼ ϵabcð ~uTaCγ5 1þγ0
2

~dbÞ ~uc is a proton interpolating

operator constructed using smeared quark fields ~q and

Γpol ¼ 1
2
ð1þ γ0Þð1þ γ3γ5Þ is a spin and parity projection

matrix. The three-point correlators have contributions from

both connected and disconnected quark contractions,

but we compute only the connected part since, for the

isovector flavor combination, the disconnected contribu-

tions cancel out.

We will be tracing the correlators with Γpol which

contains the projector ð1þ γ0Þ=2 so that we can effectively
write the overlap of the interpolating operator with the

ground-state proton as hΩjχαð0Þjp⃗; λi ¼ Zðp⃗Þuðp⃗; λÞα
[13,14]. At large time separations, we obtain

C2ðp⃗; tÞ ¼
Zðp⃗Þ2e−Eðp⃗Þt

2Eðp⃗Þ Tr½Γpolðmþ pÞ�

× ð1þOðe−ΔE10ðp⃗ÞtÞÞ; ð12Þ

C
O

q;μ

X

3 ðp⃗; p⃗0; τ; TÞ

¼ Zðp⃗ÞZðp⃗0Þe−Eðp⃗Þτ−Eðp⃗0ÞðT−τÞ

4Eðp⃗0ÞEðp⃗Þ
×
X

λ;λ0
ūðp⃗; λÞΓpoluðp⃗0; λ0Þhp0; λ0jOq;μ

X jp; λi

× ð1þOðe−ΔE10ðp⃗ÞτÞ þOðe−ΔE10ðp⃗0ÞðT−τÞÞÞ; ð13Þ

where ΔE10ðp⃗Þ is the energy gap between the ground and

the lowest excited state with momentum p⃗. By taking τ and
T − τ to be large, unwanted contributions from excited

states can be eliminated. In order to compute C3, we use

sequential propagators through the sink [15]. This has

the advantage of allowing for any operator to be inserted

at any time using a fixed set of quark propagators, but new

backward propagators must be computed for each source-

sink separation T. Increasing T suppresses excited-state

contamination, but it also increases the noise; the signal-

to-noise ratio is expected to decay asymptotically as

e−ðE−
3
2
mπÞT [16].

In order to cancel the overlap factors and the dependence

on Euclidean time, we define the normalization ratio, RX
N ,

and the asymmetry ratio, RS, as

RX
N ¼ C

O
q;μ

X

3 ðp⃗; p⃗0; τ; TÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ðp⃗; TÞC2ðp⃗0; TÞ
p ; ð14Þ

RS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ðp⃗; T − τÞC2ðp⃗0; τÞ
C2ðp⃗0; T − τÞC2ðp⃗; τÞ

s

; ð15Þ

and compute their product

R
q;μ
X ðp⃗; p⃗0; τ; TÞ ¼ RX

NRS

¼ M
q;μ
X ðp⃗; p⃗0Þ þOðe−ΔE10ðp⃗ÞτÞ

þOðe−ΔE10ðp⃗0ÞðT−τÞÞ þOðe−ΔEminTÞ;
ð16Þ

as a function of τ ∈ ½0; T� with fixed T. Above,

M
q;μ
X ðp⃗; p⃗0Þ ¼

P

λ;λ0 ūðp⃗; λÞΓpoluðp⃗0; λ0Þhp0; λ0jOq;μ
X jp; λi

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðp⃗ÞEðp⃗0ÞðEðp⃗Þ þmÞðEðp⃗0Þ þmÞ
p ;

ð17Þ

and ΔEmin ¼ minfΔE10ðp⃗Þ;ΔE10ðp⃗0Þg.
The ratio in Eq. (16) gives an estimate of the nucleon

matrix element hp0; λ0jOq;μ
X jp; λi and produces at large T a

plateau with “tails” at both ends caused by excited states. In

practice, for each fixed T, we average over the central two
or three points near τ ¼ T=2, which allows for matrix

elements to be computed with errors that decay asymp-

totically as e−ΔEminT=2.

Improved asymptotic behavior of excited-state contri-

butions can be achieved by using the summation method

[17,18] which requires performing the calculations with

multiple source-sink separations. Taking the sums of ratios

for each T yields

S
q;μ
X ðp⃗; p⃗0; TÞ≡

XT−τ0

τ¼τ0

R
q;μ
X ðp⃗; p⃗0; τ; TÞ

¼ cþ TM
q;μ
X ðp⃗; p⃗0Þ þOðTe−ΔEminTÞ; ð18Þ

where we choose τ0 ¼ 1 and c is an unknown constant. The
matrix element can then be extracted from the slope of a
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linear fit to S
q;μ
X ðp⃗; p⃗0; TÞ at several values of T. The leading

excited-state contaminations decay now as Te−ΔEminT .

For calculating the form factors—GEðQ2Þ, GMðQ2Þ for
the case of the vector current and GAðQ2Þ, GPðQ2Þ for the
case of the axial current—we construct a system of

equations parameterizing the corresponding set of matrix

elements at each fixed value of Q2 [19]. We combine

equivalent matrix elements to improve the condition

number [20]. We find the solution of the resulting over-

determined system of equations by performing a linear fit.

This approach makes use of all available matrix elements in

order to minimize the statistical uncertainty in the resulting

form factors.

The charge and axial radii can be extracted from the

slopes of the electric and axial form factors at Q2 ¼ 0,

respectively. For that we need to fit the Q2 dependence of

each form factor. In order to avoid the model dependence

included in the commonly used fit Ansätze, such as a

dipole, we use the model-independent z expansion [21–24],
where each form factor can be described by a convergent

Taylor series in z,

GðQ2Þ ¼
Xkmax

k¼0

akz
k; z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

−
ffiffiffiffiffiffi
tcut

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tcut þQ2
p

þ ffiffiffiffiffiffi
tcut

p ; ð19Þ

which conformally maps the complex domain of analyticity

in Q2 to jzj < 1. We fix a0 ¼ 1 for fitting GEðQ2Þ since

GEð0Þ ¼ 1. We use the particle production threshold

tcut ¼ ð2mπÞ2 for the vector case and tcut ¼ ð3mπÞ2 for

the axial case. We apply z-expansion fits following the

approach of Ref. [25]. The intercept and slope of the form

factor at Q2 ¼ 0 can be obtained from the first two

coefficients, a0 and a1. We impose Gaussian priors on

the remaining coefficients centered at zero with width equal

to 5maxfja0j; ja1jg. We truncate the series with kmax ¼ 5

after verifying that using a larger kmax produces identical fit

results in our probed range of Q2.

Furthermore, the isovector GP form factor has an

isolated pole at the pion mass below the particle production

threshold. We thus remove this pole before fitting and

perform the z-expansion fit to ðQ2 þm2
πÞGPðQ2Þ.

We perform correlated fits by minimizing

χ2aug ¼
X

i;j

�

GðQ2
i Þ −

X

k

akzðQ2
i Þk

�

S−1ij

×

�

GðQ2
jÞ −

X

k0
ak0zðQ2

jÞk
0
�

þ
X

k>1

a2k
w2

; ð20Þ

with respect to fakg, where S is an estimator of

the covariance matrix and the last term augments the

chi-squared with the Gaussian priors. For choosing the

estimator of the covariance matrix, we use S ¼
ð1 − λÞCþ λCdiag, where λ ¼ 0.1, C is the bootstrap

estimate of the covariance matrix and Cdiag is the diagonal

part of C.

IV. DERIVATIVE METHOD

In this section, we explain the details of our approach

for extracting the nucleon charge radius directly at Q2 ¼ 0.

We begin with reviewing the Rome method for computing

the momentum derivatives of quark propagators in

subsection IVA. The flavor structure of the correlators

constructed from the momentum derivatives of the quark

propagators is investigated in IV B. In subsection IV C, we

show how to use the momentum derivatives of the quark

propagator in order to obtain the first- and second-order

derivatives of the nucleon two- and three-point functions

with respect to the initial-state momentum p⃗, and then

obtain momentum derivatives of matrix elements in

subsection IV D. From the latter one can then extract the

charge radius r2E, the magnetic moment μ ¼ GMð0Þ, for the
case of the electromagnetic vector current, and the axial

radius, r2A, and the induced pseudoscalar form factor at zero

momentum, GPð0Þ, for the case of the axial current.

A. Momentum derivatives of quark propagator

On a lattice with finite size and quark fields satisfying

periodic boundary conditions, consider a generic correla-

tion function Cðp⃗; tÞ depending on the three-momentum p⃗
and Euclidean time t, which after fermionic integration

and Wick contractions can be written in terms of quark

propagators and operator insertions as

Cðp⃗;tÞ¼
Z

dUP½U�
X

x⃗;…

e−ip⃗ðx⃗−y⃗ÞTrfG½x;y;U�Γ…g; ð21Þ

where U are gauge links and P½U� is the corresponding

probabilistic weight in the functional integral. The plane-

wave phase factor e−ip⃗ðx⃗−y⃗Þ can then be absorbed into one

of the quark propagators, which results in a momentum

dependent quark propagator G½x; y;U; p⃗� ¼ e−ip⃗ðx⃗−y⃗Þ×
G½x; y;U�. G½x; y;U; p⃗� can be obtained by solving the

lattice Dirac equation with link variables rescaled by a

phase factor:

UkðxÞ → eipkUkðxÞ; ð22Þ
X

y

D½x; y;U; p⃗�G½y; z;U; p⃗� ¼ δx;z: ð23Þ

Carrying momentum in a propagator with a uniform Uð1Þ
background field is the same approach as used in a standard

transformation of twisted boundary conditions [26,27].

With p⃗ restricted to be a Fourier momentum in the finite

volume, the above redefinition is exact. However, to obtain

a momentum derivative, we must implicitly make use of

twisted boundary conditions and allow p⃗ to be continuous.

We use the expansion of the lattice Dirac operator,
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D½U; p⃗� ¼ D½U� þ pk

∂D

∂pk

�
�
�
�
p⃗¼0⃗

þ p2
k

2

∂2D

∂p2
k

�
�
�
�
p⃗¼0⃗

þ � � � ; ð24Þ

and D½U; p⃗�G½U; p⃗� ¼ 1 to compute the first-order

momentum derivative of the propagator as

∂D

∂pk

GþD
∂G

∂pk

¼ 0; ð25Þ

where we use the compact notation

∂D

∂pk

≡
∂D½…;U; p⃗�

∂pk

�
�
�
�
p⃗¼0

; ð26Þ

and similar notation for Gð…;U; p⃗Þ. Multiplying Eq. (25)

from the left by G≡D−1 leads to

∂G

∂pk

¼ −G
∂D

∂pk

G: ð27Þ

Similarly, we can derive the second-order momentum

derivative of the propagator:

1

2

∂2G

∂p2
k

¼ þG
∂D

∂pk

G
∂D

∂pk

G −G
1

2

∂2D

∂p2
k

G: ð28Þ

Using the lattice Dirac operator for the clover-improved

Wilson action, the momentum derivatives of the propa-

gators at a fixed gauge background become [11]

∂

∂pk

Gðx; y; p⃗Þj
p⃗¼0⃗

¼ −i
X

z

Gðx; yÞΓk
VGðx; yÞ; ð29Þ

∂2

∂p2
k

Gðx; y; p⃗Þj
p⃗¼0⃗

¼ −2
X

z;z0
Gðx; zÞΓk

VGðz; z0ÞΓk
VGðz0; yÞ

−
X

z

Gðx; yÞΓk
TGðx; yÞ: ð30Þ

We drop U from the propagators for brevity. Γk
V and Γk

T are

the point split vector and tadpole currents, respectively.

Those are defined using Euclidean gamma matrices, γkE, as

Γ
k
VGðz; y;UÞ≡U†

jðz − k̂Þ 1þ γkE
2

Gðz − k̂; yÞ

− UkðzÞ
1 − γkE

2
Gðzþ k̂; yÞ; ð31Þ

Γ
k
TGðz; y;UÞ≡U†

jðz − k̂Þ 1þ γkE
2

Gðz − k̂; yÞ

þ UkðzÞ
1 − γkE

2
Gðzþ k̂; yÞ: ð32Þ

In the case of a smeared-source smeared-sink propagator

(needed in the two-point function), the phase factor can be

absorbed into the propagator in the following way,

~~Gðx; y; p⃗Þ ¼ e−ip⃗ðx⃗−y⃗Þ
X

x0;y0
Kðx; x0ÞGðx0; y0ÞKðy0; yÞ

¼
X

x0;y0
e−ip⃗ðx⃗−x⃗

0ÞKðx; x0Þ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Kðx;x0;p⃗Þ

e−ip⃗ðx⃗
0−y⃗0ÞGðx0; y0Þ

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Gðx0;y0;p⃗Þ

× e−ip⃗ðy⃗
0−y⃗ÞKðy0; yÞ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Kðy0;y;p⃗Þ

; ð33Þ

whereK is the smearing kernel. The momentum derivatives

can then be calculated using the product rule along with

Eq. (29) and Eq. (30). Denoting the momentum derivative

with 0 for shorter notation, we obtain

ðKGKÞ0 ¼ K0GK þ KðGKÞ0; ð34Þ

ðKGKÞ00 ¼ K00GK þ 2K0ðGKÞ0 þ KðGKÞ00: ð35Þ

For the smeared-source point-sink propagator, which is

needed for the three-point function and for evaluating

Eq. (34) and Eq. (35), we obtain

ðGKÞ0 ¼ G½−iΓVGK þ K0�; ð36Þ
ðGKÞ00 ¼ G½−2iΓVðGKÞ0 − ΓTGK þ K00�: ð37Þ

Organized in this way, we require one additional

propagator solve per derivative. Gaussian Wuppertal

smearing [28] is given by Kðx; y; p⃗Þ ¼
P

x0;x00;… K0ðx; x0; p⃗ÞK0ðx0; x00; p⃗Þ…K0ðx0…0; y; p⃗Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NW

, with

K0ðx; y; p⃗Þ ¼ e−ip⃗ðx⃗−y⃗Þ
1

1þ 6α

�

δx;y þ α
X3

j¼1

½ ~UjðxÞδxþ|̂;y

þ ~U†
jðx − |̂Þδx−|̂;y�

�

¼ 1

1þ 6α

�

δx;y þ α
X3

j¼1

½eipj ~UjðxÞδxþ|̂;y

þ e−ip
j ~U†

jðx − |̂Þδx−|̂;y�
�

: ð38Þ

These gauge links ~U can be, for example, APE smeared

[29], and need not match those in the action. The mth

derivative of K0 at zero momentum is equal to

K
ðmÞ
0 ðx;yÞ≡

�
∂

∂pj

�
m

K0ðx;y;p⃗Þjp⃗¼0

¼ α

1þ6α
½im ~UjðxÞδxþ|̂;yþð−iÞm ~U†

jðx− |̂Þδx−|̂;y�:

ð39Þ

Thus, the first- and second-order momentum derivatives of

smearing with NW iterations, K ¼ K
NW

0 , can be computed
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iteratively using ðKN
0 Þ0 ¼ K0

0K
N−1
0 þ K0ðKN−1

0 Þ0 and

ðKN
0 Þ00 ¼ K00

0K
N−1
0 þ 2K0

0ðKN−1
0 Þ0 þ K0ðKN−1

0 Þ00.

B. Flavor structure of correlators constructed

from propagator derivatives

In cases where derivatives of nucleon two-point func-

tions need to be evaluated, there is an ambiguity in applying

the above procedure: there are three quark propagators, and

the momentum could be absorbed into any of them. To

resolve this issue, we make explicit use of twisted boundary

conditions, with the understanding that before computing

any correlation functions we will take the derivative with

respect to the twist angle, at vanishing twist angle.

We introduce a third light quark, r, with the same mass as

u and d but with twisted boundary conditions, and a

corresponding ghost quark that cancels its fermion deter-

minant. The three light quarks fu; d; rg contain an approxi-
mate SU(3) flavor symmetry that becomes exact when the

twist angle is zero, or in the infinite-volume limit. Under

this symmetry group there is a baryon octet that contains

the ordinary (untwisted) nucleons, as well as states with one

or two r quarks. We are interested in the states with one r
quark, and we find that there are two kinds: an isospin

singlet and a triplet, the Λr and Σr, respectively. This was

previously discussed in Ref. [30].

For the states with quark content udr, we use interpolat-
ing operators,

χΣr
¼ 1

ffiffiffi

2
p ð½rud� þ ½rdu�Þ;

χΛr
¼ 1

ffiffiffi

6
p ð2½udr� − ½rud� − ½dru�Þ; ð40Þ

where ½pqr�≡ ϵabcð ~pT
aCγ5

1þγ0
2

~qbÞ~rc. When contracted

with the projector
1þγ0
2
, the flavor-singlet operator,

1=
ffiffiffi
3

p
ð½udr� þ ½rud� þ ½dru�Þ, vanishes and theΛr operator

can be simplified to χΛr
¼

ffiffi
3
2

q

½udr�. We consider three-

point functions for the transition from a state with one r
quark to an ordinary nucleon:

CX→N
3 ðp⃗; p⃗0; τ; TÞ
¼

X

x⃗;y⃗

e−ip⃗
0ðx⃗−y⃗ÞTr½Γpolhχðx⃗; TÞOðy⃗; τÞχ̄Xð0Þi�; ð41Þ

where O ¼ ūΓr is a quark bilinear and X is Σr or Λr. The

initial momentum p⃗ is implied in the initial state due to the

twisted boundary conditions for the r quark. The ground-

state contribution is proportional to the matrix element

hNðp⃗0ÞjOjXðp⃗Þi for which we will evaluate ∂

∂p⃗
at

p⃗0 ¼ p⃗ ¼ 0. In practice, we simply use our already coded

expressions for the connected diagrams in the nucleon

three-point functions C
q
3 with Oq ¼ q̄Γq, q ∈ fu; dg, and

replace the propagator connecting the nucleon source

and Oq with a first- or second-derivative propagator. By

comparing the contractions, we find the relations

C
Σr→N
3 ¼ 1

ffiffiffi
2

p Cd
3;

C
Λr→N
3 ¼ 1

ffiffiffi

6
p ð2Cu

3 − Cd
3Þ; ð42Þ

where the r propagator is substituted into the evaluation

of the right-hand-side expressions as described above. A

similar consideration was made in Ref. [30]; these relations

could also be derived from SU(3) symmetry.

When forming ratios, we must use the appropriate two-

point functions: taking Eq. (16) with the three-point

function CX→N
3 , all nucleon two-point functions that take

the initial-state momentum p⃗ must be replaced by the two-

point function for state X. Once we have formed the ratios

for the X → N matrix elements, we can invert the relations

in Eq. (42) to obtain the nucleon matrix elements of Ou

and Od.

C. Momentum derivatives of the two-point

and three-point functions

Let us consider the two-point function of the isospin

singlet operator, χΛr
¼

ffiffi
3
2

q

½udr�. This can be written in

terms of smeared-source smeared-sink quark propagators,
~~G, as

C
Λr

2 ðp⃗; tÞ ¼ 3

2

X

x⃗

e−ip⃗ x⃗ϵabcϵdef
X

αβ

ðΓpolÞαβfβγδϵf̄αζηθ

× h ~~Gaf

γθ ðx; 0Þ ~~G
be

δη ðx; 0Þ ~~G
cd

ϵζ ðx; 0Þi

¼ 3

2

X

x⃗

ϵabcϵdef
X

αβ

ðΓpolÞαβfβγδϵf̄αζηθ

× h ~~Gaf

γθ ðx; 0Þ ~~G
be

δη ðx; 0Þ ~~G
cd

ϵζ ðx; 0; p⃗Þi; ð43Þ

where fαβγδ is the spin tensor determining the quantum

numbers of theΛr and
~~Gðx; 0; p⃗Þ ¼ e−ip⃗ x⃗ ~~Gðx; 0Þ. By using

the first- and second-order momentum derivatives of a

quark propagator at zero momentum given in Eq. (29) and

Eq. (30), one can straightforwardly calculate the momen-

tum derivatives of the two-point correlators.

For connected diagrams, the three-point function with

current OΓ ¼ q̄Γq and zero sink momentum p⃗0 ¼ 0 can be

written as

C3ðp⃗; τ; TÞ ¼
X

x⃗;y⃗

e−ip⃗ y⃗
X

αβ

ðΓpolÞαβhχβðx⃗; TÞOΓðy⃗; τÞχ̄αð0Þi

∼
X

y⃗

hGSðyÞΓ ~Gðy; 0; p⃗Þi; ð44Þ
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where ~G refers to a propagator with smeared source and

point sink and GSðyÞ is the sequential backward propaga-

tor, which is independent of p⃗. Only the forward propagator
~Gðy; 0; p⃗Þ needs to be expanded using Eq. (29) and

Eq. (30). Hence, no additional backward propagators are

needed. Figure 1 shows graphically the way we compute

the momentum derivatives of the correlation functions on

the quark level. The derivative method cannot be applied to

disconnected diagrams because those involve a quark

propagating from a point to the same point and therefore

the momentum transfer can not be absorbed into the

propagator.

D. Momentum derivatives of the ratio

Because we do not know how Zðp⃗Þ depends on the

momentum, we need to compute the momentum derivatives

of the ratio of three-point and two-point functions given in

Eq. (16). Here and in the following, we use Minkowski-

space gamma matrices. We set p⃗0 ¼ 0 and p⃗ ¼ ke⃗j, where

e⃗j is the unit vector in j-direction. For computing the first-

and second-order momentum derivatives of the ratio in

Eq. (16), we start by computing the momentum derivatives

of the normalization ratio part, RX
N , defined in Eq. (14):

ðRX
NðkÞÞ0 ¼

−C0
2ðkÞC3ðkÞ þ 2C2ðkÞC0

3ðkÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ð0ÞC2ðkÞ3
p ; ð45Þ

ðRX
NðkÞÞ00 ¼

ð3½C0
2ðkÞ�2 − 2C2ðkÞC00

2ðkÞÞC3ðkÞ þ 4C2ðkÞð−C0
2ðkÞC0

3ðkÞ þ C2ðkÞC00
3ðkÞÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2ð0ÞC2ðkÞ5
p ; ð46Þ

where, for more readability, we suppress the τ, T parameters as well as O
μ
X from the correlation functions and the ratio. We

denote the derivatives with a prime, e.g. C0
2ðkÞ≡

dC2ðkÞ
dk

. We know that C0
2ð0Þ ¼ 0 in the infinite-statistics limit because of

parity symmetry. Hence, we can eliminate this from the ratios. Similarly, we can calculate R0
SðkÞ and R00

SðkÞ which can be

used together with Eq. (45) and Eq. (46) to calculate the first- and second-order derivatives of the ratio RX. These derivatives

are computed on the lattice directly at k ¼ 0 as discussed earlier in the previous section.

From the ground-state contributions to the correlation functions given in Eq. (12) and Eq. (13), we find the following

ground-state contribution to their ratio:

RXðkÞ ¼
Tr½ΓpolFXðkÞðmþ Eγ0 − kγjÞ�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðEþmÞ
p : ð47Þ

We take the derivative with respect to k and obtain

ðRXÞ0ðkÞ ¼
Tr½ΓpolðF 0

XðkÞðmþ Eγ0 − kγjÞ þ FXðkÞðE0γ0 − γjÞÞ�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2EðEþmÞ
p −

Tr½ΓpolFXðkÞðmþ Eγ0 − kγjÞ�ð2EþmÞE0

4
ffiffiffi

2
p

½EðEþmÞ�3=2
: ð48Þ

FIG. 1. Left: Nucleon two-point (top) and three-point (bottom) functions. The solid black circles represent the nucleon source and

sink, the black square in the three-point function represents the current insertion. The red line refers to the propagator which we use for

computing the momentum derivatives of the correlators which carry therefore the derivative vertex (solid red circle). The right panel

shows the representation of the derivative vertex for the simplified case of unsmeared propagators.
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ðRXÞ00ðkÞ can be calculated in a similar way. We use the

continuum dispersion relation EðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k2
p

, which

implies Q2 ¼ 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k2
p

− 2m2, and find that at k ¼ 0,

the second derivative is needed to obtain the slope of F1:

dF1

dk

�
�
�
�
k¼0

¼ dQ2

dk

�
�
�
�
k¼0

dF1

dQ2

�
�
�
�
Q2¼0

¼ 0;

d2F1

dk2

�
�
�
�
k¼0

¼ 2
dF1

dQ2

�
�
�
�
Q2¼0

: ð49Þ

The same applies for F2, GA, and GP. Furthermore, we

have at k ¼ 0:

Eð0Þ ¼ m; E0ð0Þ ¼ 0; E00ð0Þ ¼ 1=m; ð50Þ

FVð0Þ ¼ F1ð0Þγμ; F 0
Vð0Þ ¼ F2ð0Þ

iσμj

2m
;

F 00
Vð0Þ ¼ 2

dF1

dQ2

�
�
�
�
Q2¼0

γμ − F2ð0Þ
iσμ0

2m2
; ð51Þ

FAð0Þ¼GAð0Þγμγ5; F 0
Að0Þ¼

�
− 1

2m
GPð0Þγ5; μ¼ j

0; μ≠ j
;

ð52Þ

F 00
Að0Þ ¼ 2

d

dQ2
GAð0Þγμγ5 þ

�
− 1

2m2 GPð0Þγ5; μ ¼ 0

0; μ ≠ 0
:

ð53Þ

For the renormalized vector current, we use GEð0Þ ¼ 1 and

find nonzero results for the following combinations of j
and μ:

R0
V ¼ 1; ∂1R

2
V ¼ −

i

2m
GMð0Þ; ð54Þ

∂2R
1
V ¼ i

2m
GMð0Þ; ∂2

1;2;3R
0
V ¼ −

1

4m2
−
1

3
r2E; ð55Þ

and for the axial current,

R3
A ¼ GAð0Þ; ∂3R

0
A ¼ 1

2m
GAð0Þ; ð56Þ

∂2
1;2R

3
A ¼ −

1

4m2
GAð0Þ −

1

3
GAð0Þr2A;

∂2
3R

3
A ¼ −

1

4m2
ðGAð0Þ þ 2GPð0ÞÞ −

1

3
GAð0Þr2A; ð57Þ

with ∂j ¼ ∂

∂pj and

r2E ¼ −
6

GEð0Þ
dGE

dQ2

�
�
�
�
Q2¼0

; ð58Þ

r2A ¼ −
6

GAð0Þ
dGA

dQ2

�
�
�
�
Q2¼0

: ð59Þ

From Eq. (54) and Eq. (55), we find the following relations

for the nucleon magnetic moment μ ¼ GMð0Þ and squared

charge radius r2E:

μ ¼ 2imðR2
VÞ0; ð60Þ

r2E ¼ −
3

4m2
− 3

ðR0
VÞ00
R0
V

; ð61Þ

where we average over equivalent vector components and

directions:

ðR2
VÞ0 ¼

1

2
ð∂1R

2
V − ∂2R

1
VÞ;

ðR0
VÞ00 ¼

1

3
ð∂2

1R
0
V þ ∂2

2R
0
V þ ∂2

3R
0
VÞ: ð62Þ

The squared axial radius r2A and GPð0Þ can be evaluated

using Eq. (56) and Eq. (57) as follows:

r2A ¼ −
3

4m2
−
3

2

∂2
1R

3
A þ ∂2

2R
3
A

R3
A

; ð63Þ

GPð0Þ ¼ m2ð∂2
1R

3
A þ ∂2

2R
3
A − 2∂2

3R
3
AÞ: ð64Þ

To estimate the excited-state effects contributing to the

momentum derivatives of the ratio, we take the momentum

derivatives of the leading contributions in Eq. (16), which

leads to

∂R

∂pi

�
�
�
�
p⃗¼0

∼ e−ΔE10T=2;
∂2R

∂p2
i

�
�
�
�
p⃗¼0

∼ Te−ΔE10T=2: ð65Þ

Likewise, the expected excited-state effects in applying the

summation method to the momentum derivatives of ratios

are given by

∂S

∂pi

�
�
�
�
p⃗¼0

∼ Te−ΔE10T ;
∂2S

∂p2
i

�
�
�
�
p⃗¼0

∼ T2e−ΔE10T : ð66Þ

V. LATTICE SETUP

We perform lattice QCD calculations using a tree-level

Symanzik-improved gauge action [31,32] and 2þ 1 flavors

of tree-level improved Wilson-clover quarks, which couple

to the gauge links via two levels of HEX smearing. We

carry out the calculations at the physical pion mass

mπ ¼ 135 MeV, with lattice spacing a ¼ 0.093 fm, and

a large volume L3
s × Lt ¼ 644 satisfying mπL ¼ 4. We are

measuring the isovector combination u − d of the three-

point functions, where the disconnected contributions
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cancel out. We renormalize the axial current using ZA from

[33] and the vector current by imposing Gv
Eð0Þ ¼ 1.

Furthermore, we use three source-sink separations T=a ∈

f10; 13; 16g ranging from 0.9 fm to ∼1.5 fm, and we are

using the summation method for removing contributions

from excited states. We apply our analysis on 442 gauge

configurations, using all-mode-averaging [34,35] with 64

sources with approximate propagators and one source for

bias correction per gauge configuration. For each source

position, we place nucleon sinks in both the forward and

backward directions to double statistics and obtain a total of

56576 samples. We computed the momentum derivatives of

the correlators only in the x direction on a subset of the

gauge configurations (75 configurations) and in the x, y,
and z directions on the rest (367 configurations).

VI. RESULTS

A. Derivatives of the two-point functions

We begin by testing our method applied to the simpler

case of two-point functions. From Eq. (12), the ground-

state contribution is

C2ðp⃗; tÞ ¼
Zðp⃗Þ2ðEðp⃗Þ þmÞ

Eðp⃗Þ e−Eðp⃗Þt: ð67Þ

The momentum derivatives of C2ðp⃗; tÞ can then be evalu-

ated at p⃗ ¼ 0, and we obtain

C2ð0; tÞ ¼ 2Z2e−mt; ð68Þ

C0
2ð0; tÞ ¼ 4ZZ0e−mt; ð69Þ

C00
2ð0; tÞ ¼

1

m2
½−ð1þ 2mtÞZ2 þ 4m2ðZ0Þ2 þ 4m2ZZ00�e−mt;

ð70Þ

where Z≡ Zð0Þ. We expect C0
2ð0; tÞ to vanish due to parity

symmetry and our numerical results shown in the left part of

Fig. 2 confirm that, which allows us to set Z0ð0Þ ¼ 0 in

Eq. (70). We apply a combined 1-state fit for C2ð0; tÞ and
C00
2ð0; tÞΛ;Σ using Eq. (68) and Eq. (70) with Z, Z00 and m

being the fit parameters. The results of these fits are shown in

Fig. 2, where the slight differences between the momentum

FIG. 2. C0
2ð0; tÞ (left) and −C00

2ð0; tÞΛ;Σ=C2ð0; tÞ (right). The red and blue bands correspond to the combined fits of C00
2ð0; tÞΛ;Σ

and C2ð0; tÞ.

FIG. 3. The derived values for Zðp⃗2Þ from two-state fits of

C2ðp⃗; tÞ (black points) followed by a linear fit (grey band) for

extracting Zð0Þ and Z00ð0Þ.

TABLE I. Resulting values for Zð0Þ and Z00ð0Þ using either the

combined fit of C2ð0; tÞ and C00
2ð0; tÞΛ;Σ or the fit to Zðp⃗2Þ.

Method Zð0Þ × 107 Z00ð0Þ × 107

Fit C2ð0; tÞ and C00
2ð0; tÞΛ 1.633(14) −9.9ð1.1Þ

Fit C2ð0; tÞ and C00
2ð0; tÞΣ 1.635(15) −8.9ð1.2Þ

Fit Zðp⃗2Þ 1.521(70) −9.6ð1.8Þ

COMPUTING THE NUCLEON CHARGE AND AXIAL RADII … PHYS. REV. D 97, 034504 (2018)

034504-9



derivatives of Σr and Λr two-point functions give an

indication of the systematic errors associated with the

derivative method and motivate the approach described in

Sec. IV B for isolating Σr → N from Λr → N three point

functions when extracting the momentum derivatives of the

matrix elements.

We also try another approach for extracting Zð0Þ and

Z00ð0Þwhere we apply two-state fits to C2ðp⃗; tÞ for different

FIG. 4. Isovector magnetic moment (left) and isovector charge radius (right). For both μv and ðr2EÞv=a2, results from the ratio method

are shown using source-sink separations T=a ∈ f10; 13; 16g, as well as the summation method.

FIG. 5. Isovector electric (top row) and magnetic (bottom row) form factors using both the ratio method with T ¼ 10a (left column)

and the summation method (right column). The blue points show results from the standard method and the red bands show a z-expansion

fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2 ¼ 0, computed

using the momentum derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [36].
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discrete values of p⃗2 which allows us to extract Zðp⃗2Þ. The
extracted values for Zðp⃗2Þ are consistent with a linear

dependence on ðap⃗Þ2. By applying a linear fit to Zðp⃗2Þ
against p⃗2, Zð0Þ can be obtained from the intercept and

Z00ð0Þ from the slope as Z00ð0Þ ¼ 2
∂Zðp⃗2Þ
∂p⃗2 . This is shown

in Fig. 3.

Table I reports a comparison between the extracted

values for Zð0Þ and Z00ð0Þ using the two different

approaches and when using ½C00
2ð0; tÞ�Σ and ½C00

2ð0; tÞ�Λ in

the combined fit. All fit methods lead to consistent values

for both Zð0Þ and Z00ð0Þ.

B. Electromagnetic form factors

The “plateau plots” in Fig. 4 show the results we obtain

using the momentum derivative approach for both Gv
Mð0Þ

(left), computed using Eq. (60), and ðr2EÞv=a2 (right),

extracted from Eq. (61). In each case, we show results

from both the ratio method and the summation method.

Gv
Mð0Þ increases for increased source-sink separations,

indicating that the excited-state contributions are signifi-

cant in this case. The relative statistical uncertainty is much

larger for ðr2EÞv=a2, and therefore we are unable to resolve

any significant excited-state effects.

Figure 5 shows a comparison between our results using

the derivative method and the traditional approach for both

the isovector magnetic moment μv ¼ Gv
Mð0Þ (bottom row)

and the isovector charge radius ðr2EÞv (top row). In Fig 5, we
present the results extracted using both the ratio method

with the smallest source-sink separation T=a ¼ 10 and the

summation method. When going to the summation method,

Gv
EðQ2Þ decreases significantly whereas Gv

MðQ2Þ increases
(especially for small Q2) towards the corresponding phe-

nomenological curve from Kelly [36]. This shows the

nontrivial contribution from excited states associated with

the ratio method using T=a ¼ 10. The summation points

for Gv
EðQ2Þ lie slightly above the corresponding Kelly

curve while those forGv
MðQ2Þ show a good agreement with

the Kelly curve. The derivative method’s results for both

Gv
Mð0Þ and ðr2EÞv using the summation method are con-

sistent with both the traditional method’s results and the

experiment but with statistical errors roughly twice as large

as the traditional approach for the isovector magnetic

moment and three times as large for the isovector charge

radius, as reported in Table II.

C. Axial form factors

The left-hand side of Fig. 6 shows the isovector induced

pseudoscalar form factor Gv
Pð0Þ extracted using the deriva-

tive method, Eq. (64). The right-hand side of the same

figure shows the extracted ðr2AÞv using Eq. (63). Figure 6

shows the plateau plots for both quantities corresponding

to the three available source-sink separations in addition to

TABLE II. Numerical results for the four different nucleon observables at Q2 ¼ 0, computed with the traditional method (via z
expansion fit to the form factor shape) and with the derivative method.

μv ðr2EÞv ½fm�2 Gv
Pð0Þ ðr2AÞv ½fm�2

T=a ¼ 10 Summation T=a ¼ 10 Summation T=a ¼ 10 Summation T=a ¼ 10 Summation

Traditional method 3.899(38) 4.75(15) 0.608(15) 0.787(87) 75(1) 137(7) 0.249(12) 0.295(68)

Derivative method 3.898(54) 4.46(33) 0.603(29) 0.753(273) 69(1) 137(15) 0.288(61) −0.120ð492Þ

FIG. 6. The induced pseudoscalar form factor at Q2 ¼ 0 (left) and nucleon axial radius (right). For both Gv
Pð0Þ and ðr2AÞv=a2, results

from ratio method are shown using source-sink separations T=a ∈ f10; 13; 16g, as well as the summation method.
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the summation points. For Gv
Pð0Þ, we see a large increase

with the source-sink separation, indicating substantial

excited-state effects, and that leads us to conclude that

the summation point may not be free from excited-state

effects. For ðr2AÞv, the statistical errors are too large to detect
any excited-state effects.

A comparison between our results using the derivative

method and the traditional method for both ðr2AÞv and

Gv
Pð0Þ is shown in Fig. 7, top and bottom row, respectively.

Shown are results from both the ratio method with

T=a ¼ 10 and the summation method. Both Gv
AðQ2Þ and

Gv
PðQ2Þ increase when going to the summation method

indicating the significant excited-state contributions for the

ratio method with T=a ¼ 10. The extracted value for the

axial radius using the derivative method has a much larger

statistical error compared to its value from the traditional

approach. For Gv
P in Fig. 7, before fitting we remove the

pion pole that is present in the form factor, and then restore

it in the final fit curve as was discussed in Sec. III. At

T=a ¼ 10, there is a significant disagreement between

Gv
Pð0Þ from the traditional and the derivative approaches

which is likely due to excited-state effects. The value for

Gv
Pð0Þ using the summation method and the derivative

approach seems to be in good agreement with its value from

the traditional approach despite the large extrapolation

caused by the inclusion of the pion pole in the fit.

However, Gv
Pð0Þ obtained from the derivative method

has statistical uncertainties roughly twice as large as the

traditional approach. Our results for the axial form factors

are reported in Table II.

VII. SUMMARY AND OUTLOOK

In this paper, we presented a derivative method for com-
puting nucleon observables at zero momentum transfer. This
method avoids the large extrapolationneeded in the traditional

approach for computing such quantities. We applied the

derivative method to the nucleon isovector magnetic moment

and electric charge radius as well as the isovector induced

pseudoscalar form factor at Q2 ¼ 0 and the axial radius.

We confirm that our approach produces results consistent

with those obtained using z-expansion extrapolations. At

the source-sink separations we have considered, both

methods appear to be affected by nearly the same amount

of excited-state contamination. Both the z expansion and

the derivative method avoid the model dependence

FIG. 7. Nucleon axial (top row) and induced pseudoscalar (bottom row) form factors using both the ratio method for T ¼ 10a (left

column) and the summation method (right column). The blue points show results from the standard method and the red bands show a z-

expansion fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2 ¼ 0,

computed using the momentum derivative method.
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associated with extrapolations that assume a specific form

of the Q2-dependence, such as a dipole function. In

practice, the z expansion still requires several choices in

the data analysis, such as the prior widths for the expansion

coefficients and the fit range. The derivative method

eliminates these choices, and provides a valuable cross-

check on the z expansion. The excellent agreement between

the two methods is particularly remarkable in the case of

Gv
Pð0Þ, since the pion pole produces a very large effect in

the extrapolation of Gv
PðQ2Þ to Q2 ¼ 0.

Compared to the z expansion, the derivative method

suffers from larger statistical uncertainties, especially for

the isovector charge and axial radii. This may be connected

with the fact that these quantities require a second

momentum derivative. However, Gv
Pð0Þ also requires two

derivatives and is not as noisy. Our quoted errors are

statistical; we still need to estimate and improve control

over systematic uncertainties in order to have a reliable

calculation. The difference between the CODATA value of

ðr2EÞv and its muonic hydrogen measurement is ∼0.06 fm2,

so it will be a challenge to calculate the charge radius with a

total uncertainty significantly less than that.

Due to the larger statistical uncertainties of the deriva-

tive method, our current recommendation is to use z-
expansion fits as the primary approach for determining

observables at zero momentum transfer, and to also

perform calculations using the derivative method as an

independent cross-check. Our present setup of the deriva-

tive method includes computing the momentum deriva-

tives of the nucleon correlators with respect to only the

initial nucleon momentum. As suggested originally for

the pion charge radius in Ref. [12], one can alternatively

obtain the radius by computing the mixed-momentum

derivatives of three-point functions i.e., first-order momen-

tum derivatives with respect to both initial- and final-state

momenta. A calculation including this alternative

approach is currently underway; preliminary results sug-

gest that the statistical uncertainty for the radii is signifi-

cantly reduced [37].
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