000844243 001__ 844243
000844243 005__ 20210129232835.0
000844243 0247_ $$2doi$$a10.1039/C7CP08292D
000844243 0247_ $$2ISSN$$a1463-9076
000844243 0247_ $$2ISSN$$a1463-9084
000844243 0247_ $$2pmid$$apmid:29392269
000844243 0247_ $$2WOS$$aWOS:000425107800053
000844243 0247_ $$2altmetric$$aaltmetric:32267809
000844243 037__ $$aFZJ-2018-01684
000844243 082__ $$a540
000844243 1001_ $$0P:(DE-Juel1)166208$$aAmeseder, Felix$$b0$$ufzj
000844243 245__ $$aHomogeneous and heterogeneous dynamics in native and denatured bovine serum albumin
000844243 260__ $$aCambridge$$bRSC Publ.$$c2018
000844243 3367_ $$2DRIVER$$aarticle
000844243 3367_ $$2DataCite$$aOutput Types/Journal article
000844243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520845023_25962
000844243 3367_ $$2BibTeX$$aARTICLE
000844243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844243 3367_ $$00$$2EndNote$$aJournal Article
000844243 520__ $$aA characteristic property of unfolded and disordered proteins is their high molecular flexibility, which enables the exploration of a large conformational space. We present neutron scattering experiments on the dynamics of denatured and native folded bovine serum albumin (BSA) in solution. Global protein diffusion and internal macromolecular dynamics were measured using quasielastic neutron time-of-flight and backscattering spectroscopy on the picosecond to nanosecond time- and Ångstrom length-scale. Internal protein dynamics were analysed in a first approach using stretched exponential functions. In denatured BSA predominantly slow heterogeneous dynamics dominates the observed macromolecular motions. Reduction of disulphide bridges in denatured BSA does not significantly alter the visible motions. In native folded BSA fast homogeneous dynamics and slow heterogeneous dynamics were observed. In an alternative data analysis approach, internal protein dynamics was interpreted using the analytical model of the overdamped Brownian oscillator, which allowed us to extract mean square displacements of protein internal dynamics and the fraction of hydrogen atoms participating in the observed motions. Our results demonstrate that denaturation modifies the physical nature of internal protein dynamics significantly as compared to the native folded structure.
000844243 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000844243 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000844243 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000844243 588__ $$aDataset connected to CrossRef
000844243 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000844243 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
000844243 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000844243 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x1
000844243 693__ $$0EXP:(DE-MLZ)TOF-TOF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)TOF-TOF-20140101$$6EXP:(DE-MLZ)NL2au-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eTOFTOF: Cold neutron time-of-flight spectrometer $$fNL2au$$x2
000844243 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b1$$ufzj
000844243 7001_ $$0P:(DE-Juel1)161508$$aKhaneft, Marina$$b2$$ufzj
000844243 7001_ $$0P:(DE-HGF)0$$aLohstroh, Wiebke$$b3
000844243 7001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas M.$$b4$$eCorresponding author
000844243 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP08292D$$gVol. 20, no. 7, p. 5128 - 5139$$n7$$p5128 - 5139$$tPhysical chemistry, chemical physics$$v20$$x1463-9084$$y2018
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.pdf$$yRestricted
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.gif?subformat=icon$$xicon$$yRestricted
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844243 8564_ $$uhttps://juser.fz-juelich.de/record/844243/files/c7cp08292d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844243 909CO $$ooai:juser.fz-juelich.de:844243$$pVDB$$pVDB:MLZ
000844243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166208$$aForschungszentrum Jülich$$b0$$kFZJ
000844243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b1$$kFZJ
000844243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161508$$aForschungszentrum Jülich$$b2$$kFZJ
000844243 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b4$$kFZJ
000844243 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000844243 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000844243 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000844243 9141_ $$y2018
000844243 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000844243 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844243 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000844243 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844243 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844243 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844243 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844243 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844243 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844243 920__ $$lyes
000844243 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000844243 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000844243 980__ $$ajournal
000844243 980__ $$aVDB
000844243 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000844243 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000844243 980__ $$aUNRESTRICTED