000844247 001__ 844247 000844247 005__ 20240712112818.0 000844247 0247_ $$2doi$$a10.1007/s00723-018-0983-4 000844247 0247_ $$2WOS$$aWOS:000427474000009 000844247 037__ $$aFZJ-2018-01688 000844247 041__ $$aEnglish 000844247 082__ $$a530 000844247 1001_ $$0P:(DE-Juel1)161422$$aSun, Ruoheng$$b0$$eCorresponding author 000844247 245__ $$aSecondary-Phase Formation in Spinel-type LiMn2O4-Cathode Materials for Lithium-Ion Batteries – Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy 000844247 260__ $$aWien [u.a.]$$bSpringer$$c2018 000844247 3367_ $$2DRIVER$$aarticle 000844247 3367_ $$2DataCite$$aOutput Types/Journal article 000844247 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1548257530_28685 000844247 3367_ $$2BibTeX$$aARTICLE 000844247 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000844247 3367_ $$00$$2EndNote$$aJournal Article 000844247 520__ $$aSpinel-type lithium manganese oxides are considered as promising cathode materials for lithium-ion batteries. Trace amounts of Li2MnO3 usually occur as a secondary phase in lithium-manganese spinels in the common high-temperature, solid-state synthesis, affecting the overall Li–Mn stoichiometry in the spinel phase and thereby the electrochemical performance. However, the formation of Li2MnO3 lower than 1 wt.% can hardly be quantified by the conventional analytical techniques. In this work, we synthesized lithium-manganese spinels with different Li/Mn molar ratios and demonstrate that electron paramagnetic resonance (EPR) enables quantifying trace amounts of Li2MnO3 below 10−2 wt.% in the synthesized products. The results reveal that the formation of Li2MnO3 secondary phase is favored by lithium excess in the synthesis. Based on the quantitative evaluation of the EPR data, precise determining Li–Mn stoichiometry in the spinel phase in Li1+xMn2−xO4 materials can be assessed. Accordingly, it is possible to estimate the amount of lithium on 16d-sites in the Li-rich manganese spinels. 000844247 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0 000844247 7001_ $$0P:(DE-Juel1)156296$$aJakes, Peter$$b1 000844247 7001_ $$0P:(DE-Juel1)165985$$aEurich, Svitlana$$b2 000844247 7001_ $$0P:(DE-Juel1)144939$$avan Holt, Désirée$$b3 000844247 7001_ $$0P:(DE-HGF)0$$aYang, Shuo$$b4 000844247 7001_ $$0P:(DE-HGF)0$$aHomberger, Melanie$$b5 000844247 7001_ $$0P:(DE-HGF)0$$aSimon, Ulrich$$b6 000844247 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b7 000844247 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b8 000844247 773__ $$0PERI:(DE-600)1480644-7$$a10.1007/s00723-018-0983-4$$n4$$p415-427$$tApplied magnetic resonance$$v49$$x0937-9347$$y2018 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.pdf$$yRestricted 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.gif?subformat=icon$$xicon$$yRestricted 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-180$$xicon-180$$yRestricted 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-640$$xicon-640$$yRestricted 000844247 8564_ $$uhttps://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.pdf?subformat=pdfa$$xpdfa$$yRestricted 000844247 909CO $$ooai:juser.fz-juelich.de:844247$$pVDB 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161422$$aForschungszentrum Jülich$$b0$$kFZJ 000844247 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161422$$aRWTH Aachen$$b0$$kRWTH 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156296$$aForschungszentrum Jülich$$b1$$kFZJ 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165985$$aForschungszentrum Jülich$$b2$$kFZJ 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144939$$aForschungszentrum Jülich$$b3$$kFZJ 000844247 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH 000844247 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b6$$kRWTH 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b7$$kFZJ 000844247 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b8$$kFZJ 000844247 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b8$$kRWTH 000844247 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0 000844247 9141_ $$y2018 000844247 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL MAGN RESON : 2015 000844247 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000844247 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000844247 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000844247 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000844247 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000844247 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000844247 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000844247 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000844247 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000844247 920__ $$lyes 000844247 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0 000844247 980__ $$ajournal 000844247 980__ $$aVDB 000844247 980__ $$aI:(DE-Juel1)IEK-9-20110218 000844247 980__ $$aUNRESTRICTED 000844247 981__ $$aI:(DE-Juel1)IET-1-20110218