001     844247
005     20240712112818.0
024 7 _ |a 10.1007/s00723-018-0983-4
|2 doi
024 7 _ |a WOS:000427474000009
|2 WOS
037 _ _ |a FZJ-2018-01688
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sun, Ruoheng
|0 P:(DE-Juel1)161422
|b 0
|e Corresponding author
245 _ _ |a Secondary-Phase Formation in Spinel-type LiMn2O4-Cathode Materials for Lithium-Ion Batteries – Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy
260 _ _ |a Wien [u.a.]
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1548257530_28685
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Spinel-type lithium manganese oxides are considered as promising cathode materials for lithium-ion batteries. Trace amounts of Li2MnO3 usually occur as a secondary phase in lithium-manganese spinels in the common high-temperature, solid-state synthesis, affecting the overall Li–Mn stoichiometry in the spinel phase and thereby the electrochemical performance. However, the formation of Li2MnO3 lower than 1 wt.% can hardly be quantified by the conventional analytical techniques. In this work, we synthesized lithium-manganese spinels with different Li/Mn molar ratios and demonstrate that electron paramagnetic resonance (EPR) enables quantifying trace amounts of Li2MnO3 below 10−2 wt.% in the synthesized products. The results reveal that the formation of Li2MnO3 secondary phase is favored by lithium excess in the synthesis. Based on the quantitative evaluation of the EPR data, precise determining Li–Mn stoichiometry in the spinel phase in Li1+xMn2−xO4 materials can be assessed. Accordingly, it is possible to estimate the amount of lithium on 16d-sites in the Li-rich manganese spinels.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Jakes, Peter
|0 P:(DE-Juel1)156296
|b 1
700 1 _ |a Eurich, Svitlana
|0 P:(DE-Juel1)165985
|b 2
700 1 _ |a van Holt, Désirée
|0 P:(DE-Juel1)144939
|b 3
700 1 _ |a Yang, Shuo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Homberger, Melanie
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Simon, Ulrich
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 7
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 8
773 _ _ |a 10.1007/s00723-018-0983-4
|0 PERI:(DE-600)1480644-7
|n 4
|p 415-427
|t Applied magnetic resonance
|v 49
|y 2018
|x 0937-9347
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844247/files/10.1007_s00723-018-0983-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:844247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161422
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)161422
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156296
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165985
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144939
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-HGF)0
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL MAGN RESON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21