000844252 001__ 844252
000844252 005__ 20210129232839.0
000844252 0247_ $$2doi$$a10.1021/acsmacrolett.8b00096
000844252 0247_ $$2WOS$$aWOS:000428220200013
000844252 037__ $$aFZJ-2018-01693
000844252 082__ $$a540
000844252 1001_ $$0P:(DE-HGF)0$$aDähling, Claudia$$b0
000844252 245__ $$aSelf-Templated Generation of Triggerable and Restorable Nonequilibrium Micelles
000844252 260__ $$aWashington, DC$$bACS$$c2018
000844252 3367_ $$2DRIVER$$aarticle
000844252 3367_ $$2DataCite$$aOutput Types/Journal article
000844252 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520434192_5950
000844252 3367_ $$2BibTeX$$aARTICLE
000844252 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844252 3367_ $$00$$2EndNote$$aJournal Article
000844252 520__ $$aConditional variations can lead to micellar transformations resulting in various (equilibrium) morphologies. However, creating differently shaped assemblies under the same final conditions (same ingredients, composition, temperature, etc.) is challenging. We present a thermoresponsive polyelectrolyte system allowing a pathway-dependent preparation of kinetically stable spherical star-like or cylindrical micelles. In more detail, a temperature-induced structure switch is used to generate equilibrated interpolyelectrolyte complex (IPEC) micelles of different morphologies (templates) below and above the lower critical solution temperature in the presence of plasticizer (salt). Then, lowering the salt concentration at a specific temperature kinetically freezes the formed IPECs, keeping the respective microstructural information encoded in the frozen IPEC also at other temperatures. Hence, different nonequilibrium morphologies at the same final conditions are provided. The salt-triggered transition from nonequilibrium to equilibrium micelles can be repeated for the same sample, highlighting a system with an on-demand changeable and restorable structure.
000844252 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000844252 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000844252 588__ $$aDataset connected to CrossRef
000844252 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000844252 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000844252 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000844252 7001_ $$0P:(DE-Juel1)171614$$aHouston, Judith E.$$b1
000844252 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b2
000844252 7001_ $$0P:(DE-HGF)0$$aDrechsler, Markus$$b3
000844252 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140004$$aBrugnoni, Monia$$b4
000844252 7001_ $$0P:(DE-HGF)0$$aMori, Hideharu$$b5
000844252 7001_ $$0P:(DE-HGF)0$$aPergushov, Dmitry V.$$b6
000844252 7001_ $$00000-0002-0762-6095$$aPlamper, Felix A.$$b7$$eCorresponding author
000844252 773__ $$0PERI:(DE-600)2644375-2$$a10.1021/acsmacrolett.8b00096$$gp. 341 - 346$$p341 - 346$$tACS Macro Letters$$v7$$x2161-1653$$y2018
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.pdf$$yRestricted
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.gif?subformat=icon$$xicon$$yRestricted
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844252 8564_ $$uhttps://juser.fz-juelich.de/record/844252/files/acsmacrolett.8b00096.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844252 909CO $$ooai:juser.fz-juelich.de:844252$$pVDB$$pVDB:MLZ
000844252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171614$$aForschungszentrum Jülich$$b1$$kFZJ
000844252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b2$$kFZJ
000844252 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)IHRS-BioSoft-140004$$aExternal Institute$$b4$$kExtern
000844252 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000844252 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000844252 9141_ $$y2018
000844252 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS MACRO LETT : 2015
000844252 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844252 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844252 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844252 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844252 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844252 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844252 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844252 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS MACRO LETT : 2015
000844252 920__ $$lyes
000844252 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000844252 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000844252 980__ $$ajournal
000844252 980__ $$aVDB
000844252 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000844252 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000844252 980__ $$aUNRESTRICTED