000844257 001__ 844257
000844257 005__ 20241126163032.0
000844257 0247_ $$2doi$$a10.1016/j.electacta.2018.01.145
000844257 0247_ $$2ISSN$$a0013-4686
000844257 0247_ $$2ISSN$$a1873-3859
000844257 0247_ $$2WOS$$aWOS:000425751600034
000844257 037__ $$aFZJ-2018-01698
000844257 041__ $$aEnglish
000844257 082__ $$a540
000844257 1001_ $$0P:(DE-Juel1)162243$$aDurmus, Yasin Emre$$b0$$eCorresponding author$$ufzj
000844257 245__ $$aInvestigation of the corrosion behavior of highly As-doped crystalline Si in alkaline Si–air batteries
000844257 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000844257 3367_ $$2DRIVER$$aarticle
000844257 3367_ $$2DataCite$$aOutput Types/Journal article
000844257 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520431145_5949
000844257 3367_ $$2BibTeX$$aARTICLE
000844257 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844257 3367_ $$00$$2EndNote$$aJournal Article
000844257 520__ $$aHigh corrosion rate is one of the major obstacles that have to be overcome in order to establish practical application of primary alkaline Si–air batteries. At the current state of development the theoretical specific capacity of 3820 mAh/g is reduced to 120 mAh/g in long term operable alkaline Si–air batteries, with most of the capacity losses being due to corrosion reactions. In the present work the corrosion behavior of highly As-doped <100> oriented silicon wafers, that have proved stable performance as anode materials is summarized for a scope of conditions that may arise in battery operation. More specific, corrosion rates are presented and discussed with respect to (i) time dependence, (ii) influence of KOH electrolyte concentration, (iii) chemical vs. electrochemical corrosion, and (iv) corrosion under anodic potentials as present during the discharge of batteries. Corrosion rates were found to exhibit stable time profiles for immersion times longer than 8 h. With respect to concentration dependence, three ranges of KOH concentrations were identified. Within each range, the corrosion behavior is governed by similar mechanisms, but different limiting factors. Potentiodynamic measurements show that large part of the corrosion is chemical in nature. Under discharge conditions corrosion increases whereby the discharge potential, corrosion rates, and mass conversion efficiencies depend on KOH concentrations and discharge current densities.
000844257 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000844257 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000844257 588__ $$aDataset connected to CrossRef
000844257 7001_ $$0P:(DE-Juel1)174488$$aMontiel Guerrero, Saul Said$$b1$$ufzj
000844257 7001_ $$0P:(DE-Juel1)161361$$aAslanbas, Özgür$$b2
000844257 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b3$$ufzj
000844257 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b4$$ufzj
000844257 7001_ $$0P:(DE-Juel1)129952$$ade Haart, L.G.J.$$b5$$ufzj
000844257 7001_ $$0P:(DE-HGF)0$$aEin-Eli, Yair$$b6
000844257 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b7$$ufzj
000844257 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b8$$ufzj
000844257 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.01.145$$gVol. 265, p. 292 - 302$$p292 - 302$$tElectrochimica acta$$v265$$x0013-4686$$y2018
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.pdf$$yRestricted
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.gif?subformat=icon$$xicon$$yRestricted
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844257 8564_ $$uhttps://juser.fz-juelich.de/record/844257/files/1-s2.0-S0013468618301920-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844257 909CO $$ooai:juser.fz-juelich.de:844257$$pVDB
000844257 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844257 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000844257 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844257 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844257 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844257 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844257 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844257 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844257 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844257 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844257 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844257 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844257 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844257 9141_ $$y2018
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162243$$aForschungszentrum Jülich$$b0$$kFZJ
000844257 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162243$$aRWTH Aachen$$b0$$kRWTH
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173849$$aForschungszentrum Jülich$$b1$$kFZJ
000844257 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161361$$aRWTH Aachen$$b2$$kRWTH
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b3$$kFZJ
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b4$$kFZJ
000844257 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b4$$kRWTH
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129952$$aForschungszentrum Jülich$$b5$$kFZJ
000844257 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aTECHNION Israel$$b6
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b7$$kFZJ
000844257 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b7$$kRWTH
000844257 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b8$$kFZJ
000844257 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000844257 920__ $$lyes
000844257 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000844257 980__ $$ajournal
000844257 980__ $$aVDB
000844257 980__ $$aI:(DE-Juel1)IEK-9-20110218
000844257 980__ $$aUNRESTRICTED
000844257 981__ $$aI:(DE-Juel1)IET-1-20110218