001     844270
005     20240712112819.0
024 7 _ |a 10.3762/bjnano.9.148
|2 doi
024 7 _ |a 2128/19039
|2 Handle
024 7 _ |a WOS:000433474200001
|2 WOS
037 _ _ |a FZJ-2018-01711
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Schön, Nino
|0 P:(DE-Juel1)169444
|b 0
245 _ _ |a Correlative Electrochemical Strain and Scanning Electron Microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3
260 _ _ |a Frankfurt, M.
|c 2018
|b Beilstein-Institut zur Förderung der Chemischen Wissenschaften
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1529495506_23952
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Correlative microscopy has been used to investigate the relationship between Li-ion conductivity and the microstructure of lithium aluminum titanium phosphate (Li1.3Al0.3Ti1.7(PO4)3, LATP) with high spatial resolution. A key to improvement of solid state electrolytes such as LATP is a better understanding of interfacial and ion transport properties on relevant length scales in the nanometer to micrometer range. Using common techniques, such as electrochemical impedance spectroscopy, only global information can be obtained. In this work, we employ multiple microscopy techniques to gain local chemical and structural information paired with local insights into the Li-ion conductivity based on electrochemical strain microscopy (ESM). Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) have been applied at identical regions to identify microstructural components such as an AlPO4 secondary phase. We found significantly lower Li-ion mobility in the secondary phase areas as well as at grain boundaries. Additionally, various aspects of signal formation obtained from ESM for solid state electrolytes are discussed. We demonstrate that correlative microscopy is an adjuvant tool to gain local insights into interfacial properties of energy materials.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Guenduez, Deniz
|0 P:(DE-Juel1)167214
|b 1
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 2
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 3
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 4
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 5
|e Corresponding author
773 _ _ |a 10.3762/bjnano.9.148
|0 PERI:(DE-600)2583584-1
|p 1564-1572
|t Beilstein journal of nanotechnology
|v 9
|y 2018
|x 2190-4286
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844270/files/2190-4286-9-148.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844270/files/2190-4286-9-148.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844270/files/2190-4286-9-148.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844270/files/2190-4286-9-148.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844270/files/2190-4286-9-148.jpg?subformat=icon-1440
909 C O |o oai:juser.fz-juelich.de:844270
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169444
910 1 _ |a IPC RWTH Aachen
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)169444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167214
910 1 _ |a IPC RWTH Aachen
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-Juel1)167214
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161141
910 1 _ |a IPC RWTH Aachen
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167581
910 1 _ |a IPC RWTH Aachen
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-Juel1)167581
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BEILSTEIN J NANOTECH : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a I:(DE-82)080011_20140620
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21