001     844273
005     20240712112819.0
024 7 _ |a 10.1007/s10800-018-1176-4
|2 doi
024 7 _ |a 0021-891X
|2 ISSN
024 7 _ |a 1572-8838
|2 ISSN
024 7 _ |a WOS:000427492000007
|2 WOS
037 _ _ |a FZJ-2018-01714
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Weinrich, Henning
|0 P:(DE-Juel1)164223
|b 0
|e Corresponding author
245 _ _ |a Impact of the charging conditions on the discharge performance of rechargeable iron-anodes for alkaline iron–air batteries
260 _ _ |a Dordrecht [u.a.]
|c 2018
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521460820_8745
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pressed-plate carbonyl iron electrodes for rechargeable iron–air batteries have recently been described to undergo a considerable electrochemical formation before they attain a stable and competitive discharge capacity in concentrated alkaline electrolyte. In this study, the impact of the charging conditions on the discharge performance due to electrochemical formation was investigated. Based on the results, it is demonstrated that the preset charge capacity mainly determines the resulting discharge capacities of the porous electrodes in the steady state at the end of the formation period. Furthermore, the present study elucidates the electrode processes behind formation and expands the existing phenomenological model that has recently been established to explain the evolution of the discharge capacity. Finally, feasible criteria for the comparison of different anode architectures are discussed.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gehring, Markus
|0 P:(DE-Juel1)170077
|b 1
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 2
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 3
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 4
773 _ _ |a 10.1007/s10800-018-1176-4
|0 PERI:(DE-600)1491094-9
|p 451-462
|t Journal of applied electrochemistry
|v 48
|y 2018
|x 1572-8838
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844273/files/s10800-018-1176-4.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844273
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164223
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)164223
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)170077
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)170077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL ELECTROCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21