000844287 001__ 844287
000844287 005__ 20240711113525.0
000844287 0247_ $$2doi$$a10.1088/1402-4896/aa8789
000844287 0247_ $$2ISSN$$a0031-8949
000844287 0247_ $$2ISSN$$a1402-4896
000844287 0247_ $$2WOS$$aWOS:000414120500013
000844287 0247_ $$2altmetric$$aaltmetric:25328451
000844287 037__ $$aFZJ-2018-01727
000844287 082__ $$a530
000844287 1001_ $$0P:(DE-Juel1)2594$$aCoenen, J. W.$$b0$$eCorresponding author
000844287 245__ $$aTransient induced tungsten melting at the Joint European Torus (JET)174
000844287 260__ $$aBristol$$bIoP Publ.$$c2017
000844287 3367_ $$2DRIVER$$aarticle
000844287 3367_ $$2DataCite$$aOutput Types/Journal article
000844287 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1520521957_23727
000844287 3367_ $$2BibTeX$$aARTICLE
000844287 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844287 3367_ $$00$$2EndNote$$aJournal Article
000844287 520__ $$aMelting is one of the major risks associated with tungsten (W) plasma-facing components (PFCs) in tokamaks like JET or ITER. These components are designed such that leading edges and hence excessive plasma heat loads deposited at near normal incidence are avoided. Due to the high stored energies in ITER discharges, shallow surface melting can occur under insufficiently mitigated plasma disruption and so-called edge localised modes—power load transients. A dedicated program was carried out at the JET to study the physics and consequences of W transient melting. Following initial exposures in 2013 (ILW-1) of a W-lamella with leading edge, new experiments have been performed on a sloped surface (15${}^{\circ }$ slope) during the 2015/2016 (ILW-3) campaign. This new experiment allows significantly improved infrared thermography measurements and thus resolved important issue of power loading in the context of the previous leading edge exposures. The new lamella was monitored by local diagnostics: spectroscopy, thermography and high-resolution photography in between discharges. No impact on the main plasma was observed despite a strong increase of the local W source consistent with evaporation. In contrast to the earlier exposure, no droplet emission was observed from the sloped surface. Topological modifications resulting from the melting are clearly visible between discharges on the photographic images. Melt damage can be clearly linked to the infrared measurements: the emissivity drops in zones where melting occurs. In comparison with the previous leading edge experiment, no runaway melt motion is observed, consistent with the hypothesis that the escape of thermionic electrons emitted from the melt zone is largely suppressed in this geometry, where the magnetic field intersects the surface at lower angles than in the case of perpendicular impact on a leading edge. Utilising both exposures allows us to further test the model of the forces driving melt motion that successfully reproduced the findings from the original leading edge exposure. Since the ILW-1 experiments, the exposed misaligned lamella has now been retrieved from the JET machine and post mortem analysis has been performed. No obvious mass loss is observed. Profilometry of the ILW-1 lamella shows the structure of the melt damage which is in line with the modell predictions thus allowing further model validation. Nuclear reaction analysis shows a tenfold reduction in surface deuterium concentration in the molten surface in comparison to the non-molten part of the lamella.
000844287 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000844287 588__ $$aDataset connected to CrossRef
000844287 7001_ $$0P:(DE-HGF)0$$aMatthews, G. F.$$b1
000844287 7001_ $$00000-0003-0427-8184$$aKrieger, K.$$b2
000844287 7001_ $$0P:(DE-HGF)0$$aIglesias, D.$$b3
000844287 7001_ $$0P:(DE-HGF)0$$aBunting, P.$$b4
000844287 7001_ $$0P:(DE-HGF)0$$aCorre, Y.$$b5
000844287 7001_ $$0P:(DE-HGF)0$$aSilburn, S.$$b6
000844287 7001_ $$0P:(DE-HGF)0$$aBalboa, I.$$b7
000844287 7001_ $$0P:(DE-HGF)0$$aBazylev, B.$$b8
000844287 7001_ $$0P:(DE-HGF)0$$aConway, N.$$b9
000844287 7001_ $$0P:(DE-HGF)0$$aCoffey, I.$$b10
000844287 7001_ $$0P:(DE-HGF)0$$aDejarnac, R.$$b11
000844287 7001_ $$0P:(DE-HGF)0$$aGauthier, E.$$b12
000844287 7001_ $$0P:(DE-HGF)0$$aGaspar, J.$$b13
000844287 7001_ $$0P:(DE-Juel1)130043$$aJachmich, S.$$b14$$ufzj
000844287 7001_ $$0P:(DE-HGF)0$$aJepu, I.$$b15
000844287 7001_ $$0P:(DE-HGF)0$$aMakepeace, C.$$b16
000844287 7001_ $$0P:(DE-HGF)0$$aScannell, R.$$b17
000844287 7001_ $$0P:(DE-HGF)0$$aStamp, M.$$b18
000844287 7001_ $$0P:(DE-HGF)0$$aPetersson, P.$$b19
000844287 7001_ $$0P:(DE-HGF)0$$aPitts, R. A.$$b20
000844287 7001_ $$0P:(DE-Juel1)5247$$aWiesen, S.$$b21
000844287 7001_ $$0P:(DE-HGF)0$$aWiddowson, A.$$b22
000844287 7001_ $$0P:(DE-HGF)0$$aHeinola, K.$$b23
000844287 7001_ $$0P:(DE-HGF)0$$aBaron-Wiechec, A.$$b24
000844287 773__ $$0PERI:(DE-600)1477351-x$$a10.1088/1402-4896/aa8789$$gVol. T170, p. 014013 -$$p014013 -$$tPhysica scripta$$vT170$$x1402-4896$$y2017
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.pdf$$yRestricted
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.gif?subformat=icon$$xicon$$yRestricted
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844287 8564_ $$uhttps://juser.fz-juelich.de/record/844287/files/Coenen_2017_Phys._Scr._2017_014013.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844287 909CO $$ooai:juser.fz-juelich.de:844287$$pVDB
000844287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2594$$aForschungszentrum Jülich$$b0$$kFZJ
000844287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130043$$aForschungszentrum Jülich$$b14$$kFZJ
000844287 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)5247$$aForschungszentrum Jülich$$b21$$kFZJ
000844287 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000844287 9141_ $$y2018
000844287 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844287 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000844287 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844287 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844287 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844287 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844287 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844287 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844287 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844287 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000844287 980__ $$ajournal
000844287 980__ $$aVDB
000844287 980__ $$aI:(DE-Juel1)IEK-4-20101013
000844287 980__ $$aUNRESTRICTED
000844287 981__ $$aI:(DE-Juel1)IFN-1-20101013