000844293 001__ 844293
000844293 005__ 20220930130142.0
000844293 0247_ $$2doi$$a10.3390/rs10030427
000844293 0247_ $$2Handle$$a2128/17720
000844293 0247_ $$2WOS$$aWOS:000428280100073
000844293 037__ $$aFZJ-2018-01731
000844293 041__ $$aEnglish
000844293 082__ $$a620
000844293 1001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b0$$eCorresponding author$$ufzj
000844293 245__ $$aA New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability
000844293 260__ $$aBasel$$bMDPI$$c2018
000844293 3367_ $$2DRIVER$$aarticle
000844293 3367_ $$2DataCite$$aOutput Types/Journal article
000844293 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521539755_25117
000844293 3367_ $$2BibTeX$$aARTICLE
000844293 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844293 3367_ $$00$$2EndNote$$aJournal Article
000844293 520__ $$aSeveral studies currently strive to improve the spatial resolution of coarse scale high temporal resolution global soil moisture products of SMOS, SMAP, and ASCAT. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. We use this information for the prediction of the sub-grid soil moisture variability for each SMOS, SMAP, and ASCAT grid cell. The approach is based on a method that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean, available at https://doi.org/10.1594/PANGAEA.878889. The resulting data set helps identify adequate regions to validate coarse scale soil moisture products by providing a measure of representativeness of small-scale measurements for the coarse grid cell. Moreover, it contains important information for downscaling coarse soil moisture observations of the SMOS, SMAP, and ASCAT missions. In this study, we present a simple application of the estimated sub-grid soil moisture heterogeneity scaling down SMAP soil moisture to 1 km resolution. Validation results in the TERENO and REMEDHUS soil moisture monitoring networks in Germany and Spain, respectively, indicate a similar or slightly improved accuracy for downscaled and original SMAP soil moisture in the time domain for the year 2016, but with a much higher spatial resolution.
000844293 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000844293 588__ $$aDataset connected to CrossRef
000844293 7001_ $$0P:(DE-Juel1)144811$$aRötzer, Kathrina$$b1$$ufzj
000844293 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b2$$ufzj
000844293 7001_ $$0P:(DE-HGF)0$$aSanchez, Nilda$$b3
000844293 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4$$ufzj
000844293 773__ $$0PERI:(DE-600)2513863-7$$a10.3390/rs10030427$$gVol. 10, no. 3, p. 427 -$$n3$$p427$$tRemote sensing$$v10$$x2072-4292$$y2018
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.pdf
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.gif?subformat=icon$$xicon
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.jpg?subformat=icon-1440$$xicon-1440
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.jpg?subformat=icon-180$$xicon-180
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.jpg?subformat=icon-640$$xicon-640
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/Invoice_MDPI-AG_remotesensing-266836_132622EUR.pdf?subformat=pdfa$$xpdfa
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.pdf$$yOpenAccess
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.gif?subformat=icon$$xicon$$yOpenAccess
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844293 8564_ $$uhttps://juser.fz-juelich.de/record/844293/files/remotesensing-10-00427.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844293 8767_ $$8266836$$92018-03-08$$d2018-03-08$$eAPC$$jZahlung erfolgt
000844293 909CO $$ooai:juser.fz-juelich.de:844293$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000844293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b0$$kFZJ
000844293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144811$$aForschungszentrum Jülich$$b1$$kFZJ
000844293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b2$$kFZJ
000844293 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
000844293 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000844293 9141_ $$y2018
000844293 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844293 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844293 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844293 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS-BASEL : 2015
000844293 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844293 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844293 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844293 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844293 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844293 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844293 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844293 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844293 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844293 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844293 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000844293 980__ $$ajournal
000844293 980__ $$aVDB
000844293 980__ $$aUNRESTRICTED
000844293 980__ $$aI:(DE-Juel1)IBG-3-20101118
000844293 980__ $$aAPC
000844293 9801_ $$aAPC
000844293 9801_ $$aFullTexts