000844300 001__ 844300
000844300 005__ 20210129232853.0
000844300 0247_ $$2doi$$a10.1021/acsami.7b19081
000844300 0247_ $$2ISSN$$a1944-8244
000844300 0247_ $$2ISSN$$a1944-8252
000844300 0247_ $$2pmid$$apmid:29498508
000844300 0247_ $$2WOS$$aWOS:000429625400060
000844300 037__ $$aFZJ-2018-01737
000844300 041__ $$aEnglish
000844300 082__ $$a540
000844300 1001_ $$0P:(DE-HGF)0$$aKuttner, Christian$$b0
000844300 245__ $$aSeeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance
000844300 260__ $$aWashington, DC$$bSoc.$$c2018
000844300 3367_ $$2DRIVER$$aarticle
000844300 3367_ $$2DataCite$$aOutput Types/Journal article
000844300 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524570039_25917
000844300 3367_ $$2BibTeX$$aARTICLE
000844300 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844300 3367_ $$00$$2EndNote$$aJournal Article
000844300 520__ $$aWe studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
000844300 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000844300 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000844300 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000844300 588__ $$aDataset connected to CrossRef
000844300 7001_ $$0P:(DE-HGF)0$$aMayer, Martin$$b1
000844300 7001_ $$0P:(DE-Juel1)172746$$aDulle, Martin$$b2
000844300 7001_ $$0P:(DE-HGF)0$$aMoscoso, Ana Isabel$$b3
000844300 7001_ $$0P:(DE-HGF)0$$aLópez-Romero, Juan Manuel$$b4
000844300 7001_ $$0P:(DE-Juel1)172658$$aFörster, Stephan$$b5
000844300 7001_ $$0P:(DE-HGF)0$$aFery, Andreas$$b6$$eCorresponding author
000844300 7001_ $$0P:(DE-HGF)0$$aPerez-Juste, Jorge$$b7
000844300 7001_ $$0P:(DE-HGF)0$$aContreras-Caceres, Rafael$$b8$$eCorresponding author
000844300 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b19081$$gp. acsami.7b19081$$n13$$p11152–11163$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.pdf$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.pdf$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.gif?subformat=icon$$xicon$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.gif?subformat=icon$$xicon$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844300 8564_ $$uhttps://juser.fz-juelich.de/record/844300/files/acsami.7b19081.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844300 909CO $$ooai:juser.fz-juelich.de:844300$$pVDB
000844300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172746$$aForschungszentrum Jülich$$b2$$kFZJ
000844300 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172658$$aForschungszentrum Jülich$$b5$$kFZJ
000844300 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000844300 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000844300 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000844300 9141_ $$y2018
000844300 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844300 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844300 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844300 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000844300 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844300 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844300 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844300 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844300 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844300 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844300 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000844300 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x0
000844300 980__ $$ajournal
000844300 980__ $$aVDB
000844300 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000844300 980__ $$aUNRESTRICTED