001     844300
005     20210129232853.0
024 7 _ |a 10.1021/acsami.7b19081
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a pmid:29498508
|2 pmid
024 7 _ |a WOS:000429625400060
|2 WOS
037 _ _ |a FZJ-2018-01737
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Kuttner, Christian
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524570039_25917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We studied the controlled growth of triangular prismatic Au nanoparticles with different beveled sides for surface-enhanced Raman spectroscopy (SERS) applications. First, in a seedless synthesis using 3-butenoic acid (3BA) and benzyldimethylammonium chloride (BDAC), gold nanotriangles (AuNTs) were synthesized in a mixture with gold nanooctahedra (AuNOCs) and separated by depletion-induced flocculation. Here, the influence of temperature, pH, and reducing agent on the reaction kinetics was initially investigated by UV–vis and correlated to the size and yield of AuNT seeds. In a second step, the AuNT size was increased by seed-mediated overgrowth with Au. We show for the first time that preformed 3BA-synthesized AuNT seeds can be overgrown up to a final edge length of 175 nm and a thickness of 80 nm while maintaining their triangular shape and tip sharpness. The NT morphology, including edge length, thickness, and tip rounding, was precisely characterized in dispersion by small-angle X-ray scattering and in dry state by transmission electron microscopy and field-emission scanning electron microscopy. For sensor purposes, we studied the size-dependent SERS performance of AuNTs yielding analytical enhancement factors between 0.9 × 104 and 5.6 × 104 and nanomolar limit of detection (10–8–10–9 M) for 4-mercaptobenzoic acid and BDAC. These results confirm that the 3BA approach allows the fabrication of AuNTs in a whole range of sizes maintaining the NT morphology. This enables tailoring of localized surface plasmon resonances between 590 and 740 nm, even in the near-infrared window of a biological tissue, for use as colloidal SERS sensing agents or for optoelectronic applications.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Mayer, Martin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Dulle, Martin
|0 P:(DE-Juel1)172746
|b 2
700 1 _ |a Moscoso, Ana Isabel
|0 P:(DE-HGF)0
|b 3
700 1 _ |a López-Romero, Juan Manuel
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Förster, Stephan
|0 P:(DE-Juel1)172658
|b 5
700 1 _ |a Fery, Andreas
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
700 1 _ |a Perez-Juste, Jorge
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Contreras-Caceres, Rafael
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acsami.7b19081
|g p. acsami.7b19081
|0 PERI:(DE-600)2467494-1
|n 13
|p 11152–11163
|t ACS applied materials & interfaces
|v 10
|y 2018
|x 1944-8252
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/PDF%20print%20version.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844300/files/acsami.7b19081.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844300
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172746
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172658
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21