001     844312
005     20240625095110.0
024 7 _ |a 10.1021/jacs.7b12446
|2 doi
024 7 _ |a 0002-7863
|2 ISSN
024 7 _ |a 1520-5126
|2 ISSN
024 7 _ |a pmid:29424536
|2 pmid
024 7 _ |a WOS:000427203600026
|2 WOS
024 7 _ |a altmetric:33220127
|2 altmetric
037 _ _ |a FZJ-2018-01745
082 _ _ |a 540
100 1 _ |a Genna, Vito
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1520844114_25962
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Polymerases (Pols) synthesize the double-stranded nucleic acids in the Watson–Crick (W–C) conformation, which is critical for DNA and RNA functioning. Yet, the molecular basis to catalyze the W–C base pairing during Pol-mediated nucleic acids biosynthesis remains unclear. Here, through bioinformatics analyses on a large data set of Pol/DNA structures, we first describe the conserved presence of one positively charged residue (Lys or Arg), which is similarly located near the enzymatic two-metal active site, always interacting directly with the incoming substrate (d)NTP. Incidentally, we noted that some Pol/DNA structures showing the alternative Hoogsteen base pairing were often solved with this specific residue either mutated, displaced, or missing. We then used quantum and classical simulations coupled to free-energy calculations to illustrate how, in human DNA Pol-η, the conserved Arg61 favors W–C base pairing through defined interactions with the incoming nucleotide. Taken together, these structural observations and computational results suggest a structural framework in which this specific residue is critical for stabilizing the incoming (d)NTP nucleotide and base pairing during Pol-mediated nucleic acid biosynthesis. These results may benefit enzyme engineering for nucleic acid processing and encourage new drug discovery strategies to modulate Pols function.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 1
|u fzj
700 1 _ |a De Vivo, Marco
|0 0000-0003-4022-5661
|b 2
|e Corresponding author
773 _ _ |a 10.1021/jacs.7b12446
|g Vol. 140, no. 9, p. 3312 - 3321
|0 PERI:(DE-600)1472210-0
|n 9
|p 3312 - 3321
|t Journal of the American Chemical Society
|v 140
|y 2018
|x 1520-5126
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844312/files/jacs.7b12446.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844312
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145614
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 0000-0003-4022-5661
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM CHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b J AM CHEM SOC : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21