001     844313
005     20210129232857.0
024 7 _ |a 2128/17671
|2 Handle
037 _ _ |a FZJ-2018-01746
041 _ _ |a English
100 1 _ |a Nocon, Madita
|0 P:(DE-Juel1)167543
|b 0
|e Corresponding author
111 2 _ |a NIC Symposium 2018
|c Jülich
|d 2018-02-22 - 2018-02-23
|w Germany
245 _ _ |a Superconducting flux qubits compared to ideal two-level systems as building blocks for quantum annealers
260 _ _ |c 2018
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1521010473_32375
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a For quantum computers, two theoretical models are nowadays considered to be the most important: the gate-based quantum computer and the quantum annealer.Gate-based quantum computers are based on computational gates just like classical computers, but have potentially more computational power due to the algebra behind quantum theory. A quantum annealer works fundamentally different: First the system is prepared in a known ground state of an initial Hamiltonian, then this Hamiltonian is adiabatically transformed into the final Hamiltonian whose ground state corresponds to the solution of a given problem, usually taken from the class of optimization problems.Quantum annealing works well in theory if the qubits can be modeled as two-level systems. However, in real devices, the qubits are not based on perfect two-level systems, but on a two-dimensional subspace of a larger system. This makes approximations in analytic calculations unavoidable.With a simulation utilizing the Suzuki-Trotter product-formula approach to solve the time-dependent Schrödinger equation, the time-evolution of the full state of such a device based onsuperconducting flux qubits is investigated.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 1
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
700 1 _ |a Willsch, Dennis
|0 P:(DE-Juel1)167542
|b 1
700 1 _ |a Jin, Fengping
|0 P:(DE-Juel1)144355
|b 2
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 4
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844313/files/poster.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844313/files/poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844313/files/poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844313/files/poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844313/files/poster.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844313/files/poster.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844313
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144355
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21