000844359 001__ 844359
000844359 005__ 20210129232910.0
000844359 0247_ $$2doi$$a10.1016/j.neuroimage.2018.03.007
000844359 0247_ $$2ISSN$$a1053-8119
000844359 0247_ $$2ISSN$$a1095-9572
000844359 0247_ $$2pmid$$apmid:29518572
000844359 0247_ $$2WOS$$aWOS:000430366000033
000844359 0247_ $$2Handle$$a2128/21476
000844359 0247_ $$2altmetric$$aaltmetric:34127809
000844359 037__ $$aFZJ-2018-01790
000844359 082__ $$a610
000844359 1001_ $$0P:(DE-Juel1)161460$$aVarikuti, Deepthi$$b0$$eCorresponding author
000844359 245__ $$aEvaluation of non-negative matrix factorization of grey matter in age prediction
000844359 260__ $$aOrlando, Fla.$$bAcademic Press$$c2018
000844359 3367_ $$2DRIVER$$aarticle
000844359 3367_ $$2DataCite$$aOutput Types/Journal article
000844359 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524570211_25918
000844359 3367_ $$2BibTeX$$aARTICLE
000844359 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844359 3367_ $$00$$2EndNote$$aJournal Article
000844359 520__ $$aThe relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations.This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50–690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples.
000844359 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000844359 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x1
000844359 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000844359 588__ $$aDataset connected to CrossRef
000844359 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b1
000844359 7001_ $$0P:(DE-HGF)0$$aSotiras, Aristeidis$$b2
000844359 7001_ $$0P:(DE-HGF)0$$aSchwender, Holger$$b3
000844359 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4
000844359 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh$$b5$$ufzj
000844359 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b6
000844359 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b7
000844359 7001_ $$0P:(DE-HGF)0$$aMoebus, Susanne$$b8
000844359 7001_ $$0P:(DE-Juel1)131631$$aAmunts, Katrin$$b9
000844359 7001_ $$0P:(DE-HGF)0$$aDavatzikos, Christos$$b10
000844359 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b11
000844359 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2018.03.007$$gp. S1053811918301927$$p394-410$$tNeuroImage$$v173$$x1053-8119$$y2018
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.pdf$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.gif?subformat=icon$$xicon$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844359 8564_ $$uhttps://juser.fz-juelich.de/record/844359/files/Varikuti18_AuthorPreprint.pdf$$yPublished on 2019-03-06. Available in OpenAccess from 2020-03-06.
000844359 909CO $$ooai:juser.fz-juelich.de:844359$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161460$$aForschungszentrum Jülich$$b0$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b1$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b5$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b6$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b7$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131631$$aForschungszentrum Jülich$$b9$$kFZJ
000844359 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b11$$kFZJ
000844359 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000844359 9141_ $$y2018
000844359 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844359 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000844359 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844359 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000844359 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2015
000844359 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844359 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844359 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844359 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844359 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2015
000844359 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844359 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844359 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844359 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844359 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844359 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000844359 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x1
000844359 980__ $$ajournal
000844359 980__ $$aVDB
000844359 980__ $$aUNRESTRICTED
000844359 980__ $$aI:(DE-Juel1)INM-1-20090406
000844359 980__ $$aI:(DE-Juel1)INM-7-20090406
000844359 9801_ $$aFullTexts