001     844359
005     20210129232910.0
024 7 _ |a 10.1016/j.neuroimage.2018.03.007
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a pmid:29518572
|2 pmid
024 7 _ |a WOS:000430366000033
|2 WOS
024 7 _ |a 2128/21476
|2 Handle
024 7 _ |a altmetric:34127809
|2 altmetric
037 _ _ |a FZJ-2018-01790
082 _ _ |a 610
100 1 _ |a Varikuti, Deepthi
|0 P:(DE-Juel1)161460
|b 0
|e Corresponding author
245 _ _ |a Evaluation of non-negative matrix factorization of grey matter in age prediction
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524570211_25918
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The relationship between grey matter volume (GMV) patterns and age can be captured by multivariate pattern analysis, allowing prediction of individuals' age based on structural imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal Component Analysis, PCA) show good performance but do not promote relatively localized brain components for post-hoc examinations. Here we evaluated a non-negative matrix factorization (NNMF) approach to provide a reduced, but also interpretable representation of GMV data in age prediction frameworks in healthy and clinical populations.This examination was performed using three datasets: a multi-site cohort of life-span healthy adults, a single site cohort of older adults and clinical samples from the ADNI dataset with healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer's disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard settings to compute GMV values after normalization, segmentation and modulation for non-linear transformations only. Non-negative matrix factorization was computed on the GM voxel-wise values for a range of granularities (50–690 components) and LASSO (Least Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, we compared the performance of our data compression procedure (i.e., NNMF) to various other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-based compression). We then investigated the impact of the granularity on the accuracy of age prediction, as well as the transferability of the factorization and model generalization across datasets. We finally validated our framework by examining age prediction in ADNI samples.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)
|0 G:(EU-Grant)720270
|c 720270
|f H2020-Adhoc-2014-20
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 1
700 1 _ |a Sotiras, Aristeidis
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schwender, Holger
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 4
700 1 _ |a Patil, Kaustubh
|0 P:(DE-Juel1)172843
|b 5
|u fzj
700 1 _ |a Jockwitz, Christiane
|0 P:(DE-Juel1)145386
|b 6
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 7
700 1 _ |a Moebus, Susanne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Amunts, Katrin
|0 P:(DE-Juel1)131631
|b 9
700 1 _ |a Davatzikos, Christos
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 11
773 _ _ |a 10.1016/j.neuroimage.2018.03.007
|g p. S1053811918301927
|0 PERI:(DE-600)1471418-8
|p 394-410
|t NeuroImage
|v 173
|y 2018
|x 1053-8119
856 4 _ |u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844359/files/1-s2.0-S1053811918301927-main.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2019-03-06. Available in OpenAccess from 2020-03-06.
|u https://juser.fz-juelich.de/record/844359/files/Varikuti18_AuthorPreprint.pdf
909 C O |o oai:juser.fz-juelich.de:844359
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161460
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172843
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)145386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21