001     844396
005     20240711085618.0
024 7 _ |a 10.1016/j.jeurceramsoc.2017.12.045
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000426029700015
|2 WOS
024 7 _ |a altmetric:40540082
|2 altmetric
037 _ _ |a FZJ-2018-01815
082 _ _ |a 660
100 1 _ |a Unger, Lana-Simone
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Yttrium doping of Ba 0.5 Sr 0.5 Co 0.8 Fe 0.2 O 3-δ part I: Influence on oxygen permeation, electrical properties, reductive stability, and lattice parameters
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524487018_32227
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) exhibits a very high oxygen permeability in its cubic perovskite phase, making it a promising candidate for high-temperature energy-related applications such as oxygen-transport membranes. It suffers, however, from a pronounced phase instability at application-relevant temperatures below 840 °C which is presumed to result from a valence change of B-site cobalt. In an attempt to stabilize the cubic BSCF phase, monovalent Y3+ was doped in small concentrations (1–10 mol-% yttrium) onto its B-site. The influence of this doping on the physico-chemical properties (electrical conductivity, reductive stability, lattice constant), on the sintering behavior, and on the oxygen permeation of BSCF has been systematically investigated. Despite a slightly adverse effect to permeability (decrease in oxygen permeation by about 20–30%), a doping concentration of 10 mol-% Y is found to completely suppress secondary-phase formation and, hence, stabilize the cubic BSCF system at 800 °C. These findings are extremely promising with regard to a long-term operation of BSCF in atmospheres free of acidic impurity gases.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Niedrig, Christian
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wagner, Stefan F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Menesklou, Wolfgang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Baumann, Stefan
|0 P:(DE-Juel1)129587
|b 4
|u fzj
700 1 _ |a Meulenberg, Wilhelm A.
|0 P:(DE-Juel1)129637
|b 5
|u fzj
700 1 _ |a Ivers-Tiffée, Ellen
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1016/j.jeurceramsoc.2017.12.045
|g Vol. 38, no. 5, p. 2378 - 2387
|0 PERI:(DE-600)2013983-4
|n 5
|p 2378 - 2387
|t Journal of the European Ceramic Society
|v 38
|y 2018
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844396/files/1-s2.0-S0955221917308543-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844396
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21