000844522 001__ 844522
000844522 005__ 20240529111807.0
000844522 037__ $$aFZJ-2018-01932
000844522 041__ $$aEnglish
000844522 1001_ $$0P:(DE-Juel1)142052$$aPütter, Sabine$$b0$$eCorresponding author$$ufzj
000844522 1112_ $$aJCNS Workshop: Trends and Perspectives in Neutron Instrumentation: Probing Structure and Dynamics at Interfaces and Surfaces$$cTutzing$$d2017-10-10 - 2017-10-13$$wGermany
000844522 245__ $$aAside from neutron instruments: thin film fabrication by molecular beam epitaxy at the Jülich Centre for Neutron Science
000844522 260__ $$c2017
000844522 3367_ $$033$$2EndNote$$aConference Paper
000844522 3367_ $$2DataCite$$aOther
000844522 3367_ $$2BibTeX$$aINPROCEEDINGS
000844522 3367_ $$2DRIVER$$aconferenceObject
000844522 3367_ $$2ORCID$$aLECTURE_SPEECH
000844522 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1524137549_17977$$xAfter Call
000844522 520__ $$aRational design and implementation of new generations of functional materials for energy conversion and storage, requires better fundamental understanding of these systems along with the ability to predict their properties accurately. [1, 2, 3] Utilizing thin film systems, the knowledge of the driving parameters to obtain them in high quality is crucial [4]. Molecular Beam Epitaxy (MBE) proves to be a versatile method to grow high quality and high purity epitaxial films with low intrinsic defect concentrations and atomic-layer control.At the JCNS thin film laboratory, we run an oxide MBE system for the growth of various types of samples, i.e. “classical” magnetic thin films, transition metal oxide heterostructures or just thin gold films for soft matter studies, acting as defined surfaces.  However, every sample system comes with its own challenges which makes thin film growth a research topic on its own.In the presentation, we will give an overview for high quality metal and complex oxide thin film systems all fabricated in the JCNS thin film laboratory, like SrCoOx, La1-xSrxMnO3, Fe4N or Cu/Fe multilayers. The focus lies on stoichiometry, morphology and thickness precision and detailed information about the possibilities in sample fabrication for users will be given.For quasi in-situ neutron reflectometry on thin films which are sensitive to ambient air a small versatile transfer chamber can be utilized for sample transfer and measurement from the MBE laboratory to the neutron instrument MARIA [5].  Both, the MBE setup and the transfer chamber may be booked in combination with an application for beam time at neutron instruments like MARIA.[1] R. Waser, Nanoelectronics and Information Technology, Wiley-VCH, 3rd Ed. (2012) [2] J. Mannhart and D. G. Schlom, Science 327, 1607 (2010) [3] A. Soumyanaryan, N. Reyren, A. Fert and C. Panagopoulos, Nature 539, 509 (2016) [4] S. Pütter et al., Appl. Phys. Lett. 110, 012403 (2017) [5] A. Syed Mohd et al., Rev. Sci. Instrum. 87, 123909 (2016)
000844522 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000844522 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x1
000844522 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x2
000844522 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x3
000844522 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000844522 65017 $$0V:(DE-MLZ)GC-1604-2016$$2V:(DE-HGF)$$aMagnetic Materials$$x0
000844522 693__ $$0EXP:(DE-MLZ)MBE-MLZ-20151210$$5EXP:(DE-MLZ)MBE-MLZ-20151210$$eMBE-MLZ: Molecular Beam Epitaxy at MLZ$$x0
000844522 7001_ $$0P:(DE-Juel1)159309$$aSyed Mohd, Amir$$b1$$ufzj
000844522 7001_ $$0P:(DE-Juel1)130572$$aBrückel, Thomas$$b2$$ufzj
000844522 909CO $$ooai:juser.fz-juelich.de:844522$$pVDB$$pVDB:MLZ
000844522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142052$$aForschungszentrum Jülich$$b0$$kFZJ
000844522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159309$$aForschungszentrum Jülich$$b1$$kFZJ
000844522 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130572$$aForschungszentrum Jülich$$b2$$kFZJ
000844522 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000844522 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x1
000844522 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x2
000844522 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x3
000844522 9141_ $$y2018
000844522 920__ $$lyes
000844522 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000844522 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000844522 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x2
000844522 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000844522 980__ $$aconf
000844522 980__ $$aVDB
000844522 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000844522 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000844522 980__ $$aI:(DE-Juel1)PGI-4-20110106
000844522 980__ $$aI:(DE-82)080009_20140620
000844522 980__ $$aUNRESTRICTED
000844522 981__ $$aI:(DE-Juel1)JCNS-2-20110106