001     844525
005     20240619092114.0
024 7 _ |a 10.1038/s41563-017-0004-2
|2 doi
024 7 _ |a 1476-1122
|2 ISSN
024 7 _ |a 1476-4660
|2 ISSN
024 7 _ |a pmid:29335610
|2 pmid
024 7 _ |a WOS:000426012000010
|2 WOS
024 7 _ |a altmetric:15258950
|2 altmetric
037 _ _ |a FZJ-2018-01935
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Li, B.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Liquid-like thermal conduction in intercalated layered crystalline solids
260 _ _ |a Basingstoke
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521198539_6672
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a As a generic property, all substances transfer heat through microscopic collisions of constituent particles1. A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations2,3. As a result, a solid is usually thermally more conductive than a liquid. In canonical viewpoints, such a difference also serves as the dynamic signature distinguishing a solid from a liquid. Here, we report liquid-like thermal conduction observed in the crystalline AgCrSe2. The transverse acoustic phonons are completely suppressed by the ultrafast dynamic disorder while the longitudinal acoustic phonons are strongly scattered but survive, and are thus responsible for the intrinsically ultralow thermal conductivity. This scenario is applicable to a wide variety of layered compounds with heavy intercalants in the van der Waals gaps, manifesting a broad implication on suppressing thermal conduction. These microscopic insights might reshape the fundamental understanding on thermal transport properties of matter and open up a general opportunity to optimize performances of thermoelectrics.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, H.
|0 0000-0001-9972-2019
|b 1
700 1 _ |a Kawakita, Y.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Q.
|0 0000-0003-0389-7039
|b 3
700 1 _ |a Feygenson, M.
|0 P:(DE-Juel1)169262
|b 4
|u fzj
700 1 _ |a Yu, H. L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wu, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ohara, K.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kikuchi, T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shibata, K.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Yamada, T.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Ning, X. K.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Chen, Y.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a He, J. Q.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Vaknin, D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Wu, R. Q.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Nakajima, K.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Kanatzidis, M. G.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1038/s41563-017-0004-2
|g Vol. 17, no. 3, p. 226 - 230
|0 PERI:(DE-600)2088679-2
|n 3
|p 226 - 230
|t Nature materials
|v 17
|y 2018
|x 1476-4660
909 C O |o oai:juser.fz-juelich.de:844525
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169262
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NAT MATER : 2015
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-ESS-20170404
|k JCNS-ESS
|l JCNS-ESS
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-ESS-20170404
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21