000844526 001__ 844526
000844526 005__ 20240619092110.0
000844526 0247_ $$2doi$$a10.1021/acsami.7b13300
000844526 0247_ $$2ISSN$$a1944-8244
000844526 0247_ $$2ISSN$$a1944-8252
000844526 0247_ $$2pmid$$apmid:29244481
000844526 0247_ $$2WOS$$aWOS:000422814400048
000844526 037__ $$aFZJ-2018-01936
000844526 082__ $$a540
000844526 1001_ $$0P:(DE-HGF)0$$aBhat, Swetha S. M.$$b0
000844526 245__ $$aNanostructured Na 2 Ti 9 O 19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability
000844526 260__ $$aWashington, DC$$bSoc.$$c2018
000844526 3367_ $$2DRIVER$$aarticle
000844526 3367_ $$2DataCite$$aOutput Types/Journal article
000844526 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521198665_6668
000844526 3367_ $$2BibTeX$$aARTICLE
000844526 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844526 3367_ $$00$$2EndNote$$aJournal Article
000844526 520__ $$aHerein, we report a new Na-insertion electrode material, Na2Ti9O19, as a potential candidate for Na-ion hybrid capacitors. We study the structural properties of nanostructured Na2Ti9O19, synthesized by a hydrothermal technique, upon electrochemical cycling vs Na. Average and local structures of Na2Ti9O19 are elucidated from neutron Rietveld refinement and pair distribution function (PDF), respectively, to investigate the initial discharge and charge events. Rietveld refinement reveals electrochemical cycling of Na2Ti9O19 is driven by single-phase solid solution reaction during (de)sodiation without any major structural deterioration, keeping the average structure intact. Unit cell volume and lattice evolution on discharge process is inherently related to TiO6 distortion and Na ion perturbations, while the PDF reveals the deviation in the local structure after sodiation. Raman spectroscopy and X-ray photoelectron spectroscopy studies further corroborate the average and local structural behavior derived from neutron diffraction measurements. Also, Na2Ti9O19 shows excellent Na-ion kinetics with a capacitve nature of 86% at 1.0 mV s–1, indicating that the material is a good anode candidate for a sodium-ion hybrid capacitor. A full cell hybrid Na-ion capacitor is fabricated by using Na2Ti9O19 as anode and activated porous carbon as cathode, which exhibits excellent electrochemical properties, with a maximum energy density of 54 Wh kg–1 and a maximum power density of 5 kW kg–1. Both structural insights and electrochemical investigation suggest that Na2Ti9O19 is a promising negative electrode for sodium-ion batteries and hybrid capacitors.
000844526 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000844526 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000844526 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000844526 588__ $$aDataset connected to CrossRef
000844526 7001_ $$0P:(DE-HGF)0$$aBabu, Binson$$b1
000844526 7001_ $$0P:(DE-Juel1)169262$$aFeygenson, Mikhail$$b2
000844526 7001_ $$0P:(DE-HGF)0$$aNeuefeind, Joerg C.$$b3
000844526 7001_ $$00000-0001-5745-4423$$aShaijumon, M. M.$$b4$$eCorresponding author
000844526 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b13300$$gVol. 10, no. 1, p. 437 - 447$$n1$$p437 - 447$$tACS applied materials & interfaces$$v10$$x1944-8252$$y2018
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.pdf$$yRestricted
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.gif?subformat=icon$$xicon$$yRestricted
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844526 8564_ $$uhttps://juser.fz-juelich.de/record/844526/files/acsami.7b13300.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844526 909CO $$ooai:juser.fz-juelich.de:844526$$pVDB
000844526 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169262$$aForschungszentrum Jülich$$b2$$kFZJ
000844526 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000844526 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000844526 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000844526 9141_ $$y2018
000844526 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844526 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844526 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844526 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000844526 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844526 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844526 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844526 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844526 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844526 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844526 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000844526 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000844526 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000844526 9201_ $$0I:(DE-Juel1)JCNS-ESS-20170404$$kJCNS-ESS$$lJCNS-ESS$$x2
000844526 980__ $$ajournal
000844526 980__ $$aVDB
000844526 980__ $$aI:(DE-Juel1)ICS-1-20110106
000844526 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000844526 980__ $$aI:(DE-Juel1)JCNS-ESS-20170404
000844526 980__ $$aUNRESTRICTED
000844526 981__ $$aI:(DE-Juel1)IBI-8-20200312
000844526 981__ $$aI:(DE-Juel1)JCNS-1-20110106