001     844545
005     20220930130143.0
024 7 _ |a 10.1038/s41598-018-23100-3
|2 doi
024 7 _ |a 2128/18496
|2 Handle
024 7 _ |a pmid:29618785
|2 pmid
024 7 _ |a WOS:000429095600001
|2 WOS
024 7 _ |a altmetric:35438504
|2 altmetric
037 _ _ |a FZJ-2018-01952
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Tavabi, Amir Hossein
|0 P:(DE-Juel1)157886
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Tunable Ampere phase plate for low dose imaging of biomolecular complexes
260 _ _ |a London
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1526304472_6157
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A novel device that can be used as a tunable support-free phase plate for transmission electron microscopy of weakly scattering specimens is described. The device relies on the generation of a controlled phase shift by the magnetic field of a segment of current-carrying wire that is oriented parallel or antiparallel to the electron beam. The validity of the concept is established using both experimental electron holographic measurements and a theoretical model based on Ampere’s law. Computer simulations are used to illustrate the resulting contrast enhancement for studies of biological cells and macromolecules.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Beleggia, Marco
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Migunov, Vadim
|0 P:(DE-Juel1)159136
|b 2
700 1 _ |a Savenko, Alexey
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Öktem, Ozan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 5
|u fzj
700 1 _ |a Pozzi, Giulio
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/s41598-018-23100-3
|g Vol. 8, no. 1, p. 5592
|0 PERI:(DE-600)2615211-3
|n 1
|p 5592
|t Scientific reports
|v 8
|y 2018
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/844545/files/2676098720-Tavabi.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844545/files/2676098720-Tavabi.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844545/files/s41598-018-23100-3.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844545
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159136
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)144121
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)ER-C-2-20170209
|k ER-C-2
|l Materialwissenschaft u. Werkstofftechnik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)ER-C-2-20170209
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21