000844546 001__ 844546
000844546 005__ 20240712084509.0
000844546 0247_ $$2doi$$a10.1088/1361-648X/aaabad
000844546 0247_ $$2ISSN$$a0953-8984
000844546 0247_ $$2ISSN$$a1361-648X
000844546 0247_ $$2pmid$$apmid:29381142
000844546 0247_ $$2WOS$$aWOS:000425435800001
000844546 0247_ $$2altmetric$$aaltmetric:32697394
000844546 0247_ $$2Handle$$a2128/22985
000844546 037__ $$aFZJ-2018-01953
000844546 041__ $$aEnglish
000844546 082__ $$a530
000844546 1001_ $$00000-0002-8790-340X$$aRöhr, Jason A$$b0$$eCorresponding author
000844546 245__ $$aExploring the validity and limitations of the Mott–Gurney law for charge-carrier mobility determination of semiconducting thin-films
000844546 260__ $$aBristol$$bIOP Publ.$$c2018
000844546 3367_ $$2DRIVER$$aarticle
000844546 3367_ $$2DataCite$$aOutput Types/Journal article
000844546 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521453774_8747
000844546 3367_ $$2BibTeX$$aARTICLE
000844546 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844546 3367_ $$00$$2EndNote$$aJournal Article
000844546 520__ $$aUsing drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current–voltage regimes can dominate the whole voltage range, and the intermediate Mott–Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott–Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott–Gurney law when used for analysis of intrinsic semiconductors are discussed.
000844546 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000844546 588__ $$aDataset connected to CrossRef
000844546 7001_ $$0P:(DE-HGF)0$$aMoia, Davide$$b1
000844546 7001_ $$0P:(DE-HGF)0$$aHaque, Saif A$$b2
000844546 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3
000844546 7001_ $$0P:(DE-HGF)0$$aNelson, Jenny$$b4$$eCorresponding author
000844546 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/1361-648X/aaabad$$gVol. 30, no. 10, p. 105901 -$$n10$$p105901$$tJournal of physics / Condensed matter$$v30$$x1361-648X$$y2018
000844546 8564_ $$uhttps://juser.fz-juelich.de/record/844546/files/R%C3%B6hr_2018_J._Phys.__Condens._Matter_30_105901.pdf$$yRestricted
000844546 8564_ $$uhttps://juser.fz-juelich.de/record/844546/files/R%C3%B6hr_2018_J._Phys.__Condens._Matter_30_105901.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844546 8564_ $$uhttps://juser.fz-juelich.de/record/844546/files/MT_JPCM_JAR_Jan_2018_final.pdf$$yOpenAccess
000844546 909CO $$ooai:juser.fz-juelich.de:844546$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844546 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000844546 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000844546 9141_ $$y2018
000844546 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844546 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS-CONDENS MAT : 2015
000844546 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844546 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844546 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844546 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844546 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844546 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844546 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844546 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000844546 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844546 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844546 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844546 920__ $$lyes
000844546 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000844546 9801_ $$aFullTexts
000844546 980__ $$ajournal
000844546 980__ $$aVDB
000844546 980__ $$aUNRESTRICTED
000844546 980__ $$aI:(DE-Juel1)IEK-5-20101013
000844546 981__ $$aI:(DE-Juel1)IMD-3-20101013