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Using drift-diffusion simulations, we investigate the voltage dependence of the dark current
in single carrier devices typically used to determine charge-carrier mobilities. For both low
and high voltages, the current increases linearly with the applied voltage. Whereas the linear
current at low voltages is mainly due to space charge in the middle of the device, the linear
current at high voltage is caused by charge-carrier saturation due to a high degree of injection.
As a consequence, the current density at these voltages does not follow the classical square
law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate
voltages, a space-charge-limited drift current can be observed with a slope that approaches
two. We show that, depending on the thickness of the semiconductor layer and the size of the
injection barriers, the two linear current-voltage regimes can dominate the whole voltage
range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which
will especially occur for thicknesses and injection barriers typical for single-carrier devices
used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will
become unachievable, because a square-law fit can no longer be achieved, resulting in the
mobility being substantially underestimated. General criteria for when to expect deviations
from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

1. Introduction

The space-charge-limited current (SCLC) measurement of charge carrier mobilities relies on the
interpretation of current voltage characteristics of single-carrier devices. The measurement is
simple to perform, which makes SCLC a convenient method for investigating charge transport
properties of semiconductors[1][2][3][4].- In addition, single-carrier devices used for SCLC
measurements are of similar architecture to solar cells and diodes, allowing for the determination
of the charge-carrier mobility of a device with similar film thickness, similar processing history,
and therefore similar morphology. This allows for a direct comparison of the films used to
measure charge transport and the films used for the optoelectronic components. This is in
contrast to other popular charge transport characterisation techniques, such as time-of-flight
mobility measurements which require very thick devices, and field-effect-transistor mobility
measurements which require a lateral device structure and hence probe the lateral charge
transport.

The obtained SCLC data is however prone to misinterpretation, and identifying the correct
model for interpreting the measured current density-voltage (J-V) curves is a critical matter[5].
The widely used Mott-Gurney (MG) law[6] has been proposed as a good model for interpreting
SCLC of devices that satisfy the following conditions: i) The semiconductor layer being probed is
undoped and trap free, and ii) is sandwiched between two Ohmic contacts (even though Ohmic
contacts are not always well defined). Furthermore, iii) diffusion contributions to the current
must be negligible, which may be the case only for certain voltage ranges, even for devices that
satisfy i) and ii). In this work we use the term ‘ideal’ for devices satisfying conditions i) and ii).
However, the J-V curves from real single-carrier devices are usually affected by the non-ideal
features of the material such as charge-carrier traps, energetic disorder or doping, and also by
the non-ideality of the single-carrier device, such as the effect of injection barriers and built-in
voltages arising from the choice of contacts[7][8]. These non-ideal features lead to deviations



between the actual mobility and the one determined from the MG law as well as to deviations
between the actual shape of the J-V curve and the one predicted by the MG law.

In previous studies, attempts have been made to find alternative models to fit SCLC data to
account for non-ideal behaviour. For example, analytical equations have been expanded from the
MG law to give qualitative explanations to the observed effects of traps, such as Rose’s and
Lampert’s approach of defining an effective mobility when a discrete level of traps is
present[9][10], and the Mark-Helfrich equation which describes current in the Mott-Gurney
regime when a shallow exponential distribution of traps is present[7]. Equations have also been
derived to explain Poole-Frenkel like effects, such as the Murgatroyd equation[11]. However,
since all of these equations ignore the diffusion part of the current, which is the part of the current
which is most heavily influenced by the presence of traps and disorder, they must be approached
with caution when used for SCLC analysis[12][13]. A number of other studies have utilized a
more sophisticated model to analyse SCLC through the wuse of drift-diffusion
simulations[14][15][16][17][18][19], although the majority of SCLC measurements is still, to this
date, being analysed using analytical models.

As mentioned above, a vast amount of effort has been put into adapting the simple MG theory
to account for non-ideal features such as traps. However, none of the previous studies have
directly addressed the fundamental question of whether the MG law is in fact suitable for analysis
of ideal materials, i.e., whether the MG law can accurately describe the response of ideal materials,
without traps or energetic disorder, for which it was originally derived. The model on which the
MG law is based implies that the electric field at the injecting contact is zero. This causes the
charge-carrier density in the semiconductor, at this point, to tend to infinity and decrease towards

the extracting contact, following an Vx~1 dependence, where x is the spatial positon from the
injecting contact (regardless of the magnitude of the applied voltage). This is a non-physical
situation resulting from the boundary conditions used, and does not reflect what is happening in
areal device. By not considering the metal-semiconductor contacts properly, the MG law does not
correctly account for charge-carrier injection from the metal, beyond the equilibrium charge
carrier density, neither without an applied bias nor when a very large bias is applied. For this
reason, the MG theory is not able to account for the current at low voltages[20][21], and for the
accumulation of charge-carriers beyond the MG description, and eventual charge-carrier
saturation (large uniform density across the length of the semiconducting layer) inside the single-
carrier device when a large voltage is applied[22]. Accounting for the phenomena responsible for
the current-voltage response at both at low and high voltages, is important for a complete
description of the charge-transport through a single-carrier device.

In the present study we address the applicability of the MG law to the case of an ideal material.
Our analysis rests particularly on the physical validity of the boundary conditions assumed in the
MG law derivation and on the importance of charge saturation in devices of typical thicknesses
and with typical injection barrier heights of those that are studied experimentally in the
community. Through drift-diffusion simulations the current density-voltage and charge-carrier
density profiles of ideal and non-ideal single-carrier devices of intrinsic semiconductors are
investigated. We show that the charge-carrier accumulation must be accounted for when the
semiconductor film is thin, appreciable voltages are applied and/or when injection barriers are
present, since the linear voltage regimes will dominate the J-V curves and a fit with the MG law
can no longer be achieved. The accuracy of the MG law is then evaluated for the simulated single-
carrier devices when saturation currents dominate, and it is shown that when the MG law is
nevertheless used, even though a direct fit cannot be achieved, the obtained charge-carrier
mobility will be underestimated by up to several orders of magnitude. The findings of the study
are particularly important when analysing SCLC measurements of organic semiconductors, when
the thickness of the semiconducting layer is thin (<100 nm)[19][23] and the injection barriers
between the metal contacts and the semiconductor are relatively large (>0.1 eV)[24]. The findings
in this study are, however, not limited to organic semiconductors, but are relevant for all intrinsic
semiconductors probed by SCLC using single-carrier devices.



2. Single-carrier devices

Single-carrier devices, used to measure SCLC, consist of a semiconductor sandwiched between
two electrodes. The energetics of the interface between the semiconductor and the electrodes are
briefly reviewed here. When an interface is formed between a metal and an intrinsic
semiconductor, given that the value of the work function of the metal, or the metal Fermi energy,
Eretal is approximately equal to either the conduction band energy, Ec, or valence band edge
energy, Ey, either electrons or holes are injected into the semiconductor from the metal forming
either a negative or positive space-charge layer at the interface (shown for electrons in fig. 1a).
This happens in order to equilibrate the Fermi level across the interface (we refer to the charge
carriers injected in this way as the equilibrium charge carriers). The depth of the space-charge
layer due to this charge-carrier injection is governed by the Debye screening length (see fig. 1a).
The authors define the interface between a metal and a semiconductor as shown in fig 1a as an
Ohmic contact.

In the case of an electron injecting interface, if the metal work function is slightly larger than
the electron affinity (Eyac — Ec), i.e., the metal Fermi energy EF*%?! is a few meV deeper than E
of the semiconductor, an injection barrier, q(,binj, is formed. Such an interface is shown in fig. 1b,
and the authors define such a contact as a non-Ohmic contact.
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Figure 1 - a) Metal/(intrinsic)semiconductor interface prior to and after
equilibrium with perfect match between conduction band edge (E;) and metal
Fermi energy (EP°%!). b) Difference between EP®®@! and E. will lead to an
injection barrier (¢;y;). ¢) Metal/semiconductor/metal interface prior to and
after equilibrium (Ectand Ec? represent the conduction band edges arising from
interface 1 and 2, respectively). The depth of the space-charge region, as
determined from the Debye length (Lp), is shown in a and b).



In the case of a metal/semiconductor/metal device, where the semiconductor layer is thinner
than twice the space-charge layer thickness (a situation which is also called overlapping
contacts[25][26]), charge carriers are injected from both electrodes in great excess of the
intrinsic carrier density across the length of the device[27]. Such a device, as shown in fig. 1c, is
completely governed by the equilibrium electrons, and the device is called an electron-only
device. Since injection of further charge carriers, when applying a bias voltage across the device,
is of the same type as the equilibrium charge carriers in the device, the current flowing through
the device is space-charge-limited and does not depend on intrinsic charge carriers.

A schematic of a finished symmetric single-carrier device with Ohmic contacts is shown in fig.
2a. It is here important to mention that an additional barrier for electron flow exists, namely the
internal diffusion barrier, q¢gis, which is defined as the difference between the conduction band
edge energy and Fermi level at the virtual electrode, which is the point of vanishing electric field
(see fig. 2a). Even though charge-carriers have entered the device through the injection barrier,
which for an Ohmic contact could be zero, the charge-carriers must cross the diffusion barrier for
current to flow through the device. This results in a total barrier height hindering charge-
transport which can be treated as a sum of the internal diffusion barrier height and the injection
barrier height, q¢ior = qaitr + qinj[28]. As will be seen below, as the voltage is applied across

the device, qqifr will reduce in height while q¢;y,; will remain constant.

3. Analytical theory

The following sections review the analytical expressions that describe current flow through
intrinsic semiconductors placed in ideal and non-ideal single-carrier devices; in the low voltage
regime (the moving electrode equation), the intermediate voltage regime (the MG law), and in the
high voltages regime (the saturation current equation).

a) virtual electrode ) A
E ./ /
metal~—"_ _ _ _ _ _ _ _ = metal : N, E,
E .
F E \
V=0V g localised states
—
[}
E, 3 [ /
... N
semiconductor thickness —

Density of states [cm™]

©) virtual electrode, F=0

saturation current
(994x=0)

electron
injection /
q¢diff

physical )
electrode

V=V,

X

Figure 2 - a) Schematic of energy level diagrams of an electron-only at
equilibrium showing the position of the virtual electrode with black solid lines
being the spatial conduction and valence band edge energies, and the green



dashed line being the semiconductor Fermi level. b) Density of states profiles of
the studied semiconductors with traps (N, is the trap density at the connection
points between the parabolic density of states and the tails). c) Energy level
diagrams under a moderately applied voltage, VV = Vx, where Vx is the voltage
onset to drift dominated currents. The virtual electrode is shown to move
towards the physical electrode. d) Ata large applied voltage (V >> Vx) the carrier
density is saturated across the device.

3.1.  The moving electrode equation

When a low voltage is applied across an intrinsic and symmetric single-carrier device (fig. 2a), a
linear J-V behaviour is observed[20][21][29]. This current is not due to the intrinsic charge-
carrier density, but rather due to the equilibrium charge-carrier density in the middle of the
device[30], and is therefore not a true Ohmic current[27]. This linear J-V behaviour is observed
until the condition where the virtual electrode, moves to the physical electrode at the device
boundary (fig. 2a and c). Since the condition for when this linear current is observed happens
when the virtual electrode moves, we denote the current as the moving electrode (ME) current.
The relatively unknown equation governing the ME current was first presented by R. de Levie et
al[20] and later by Grinberg and Luryi[21]. In the case of an electron-only device, where only
electron transport is probed, the ME equation is given by

kgT %4
J =42 g, (1)

where kgT is the thermal energy, q is the elementary charge, y,, is the electron mobility (assumed
independent of the charge-carrier density and electric field), gy¢, is the permittivity, V is the
applied voltage (up to around 0.1 V) and L is the semiconductor thickness. Given that the
temperature, the relative permittivity and the thickness of the sample is known, the ME equation
(eq. 1) can, in principle, be fitted to the low voltage regime and the mobility can be extracted. It is
important to note that the ME equation only correctly gives the current density at low voltages
when the semiconductor is trap free and doping free and when the current is not limited by poor
injection from the metal contacts.

The spatial dependence of the charge-carrier density neither increases nor shifts significantly
whilst the current follows the ME equation. The energy landscape of the single-carrier device is,
for that reason, well represented by fig. 2a whilst the ME current is flowing.

3.2.  The Mott-Gurney law

When a large enough voltage is applied across a single-carrier device, so that the virtual electrode
coincides with the physical electrode, q¢qisr is approximately zero, and the current across the
device will mainly be governed by drift. The current can in this case be described by the MG law
which, for the case of an electron-only device, is given by[6],

9 V2
] = gﬂngogr 3 (2)

The charge-carrier mobility of the electrons can in principle be obtained by fitting with the MG
law (eq. 2) to the J-V curve obtained from the SCLC measurement in the region where | « V2, i.e,,
in the MG voltage regime. The MG law is only applicable given that a number of assumptions are
true: i) the intrinsic carrier concentration is negligible when current is flowing, meaning that the
current will mainly be governed by the equilibrium charge-carrier density and the injected charge
carriers due to an applied voltage; ii) both the contacts for injection and extraction are Ohmic,
meaning that q¢j,j/ext = 0 €V or injection barriers are not affecting the current, and charge

carriers are always available to enter and leave the device, i.e., the metals act as electron



reservoirs; iii) the material is defect free and free from energetic disorder, and finally; iv) the
current density is governed by drift only, which implies the previously mentioned condition of
vanishing electric field at the device interface.

Assumption i) is justified in the discussion of fig. 1. The other assumptions are however
generally not true: Regarding assumption ii), we define our contact potentials as the difference
between EP¢%! and the respective band-edge energy (here the conduction band for an electron-

only device, as shown in fig 1c,

qinj = Ec(x = 0) —EF*?(x = 0). (3)

Realising Ohmic contacts to a semiconductor is not easily achieved, as surface states can pin the
Fermi level in the sub-gap region. Furthermore, low work function materials, which are
commonly used as electron selective contacts to organic materials, such as Ca (2.9 eV), Ba (2.7
eV) and Al (4.1 eV), are highly reactive with the ambient atmosphere, causing them to oxidize,
usually resulting in a change in work function. Assumption iii) is usually not true since many
semiconducting materials are semi-crystalline or amorphous which means they are usually not
defect free. Such defects can act as trap sites or give rise to unintentional doping, which will either
decrease (traps) or increase (doping) the overall magnitude if the current whilst drastically
changing the shape of the J-V curve[31][32]. As a consequence of iv) the electric field will increase
within the electron-only device as,
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F(x)=— (4)

where x is the position from the injecting contact. The charge carrier density for electrons can
then be obtained through Gauss’ law as,

n(x) =§ /% (5)

It is important to note that the analytical expression of the charge-carrier density in the MG
regime (eq. 5) tends to infinity at the injecting contact. Like previously mentioned, this is a non-
physical situation resulting from the boundary conditions imposed on the electric field at the
device boundary (F = 0 atx = 0). Having a finite charge-carrier density at the device boundaries
rather than allowing the charge-carrier density to extend to infinity will have an influence on the
current density.

3.3.  The saturation current equation

At high voltages, a large density of charge carriers is injected into a single-carrier device to an
extent where the charge-carrier density across the device is uniform (fig. 2d). This is called the
charge-carrier saturation limit, and is also referred to as the injection limit. This is distinct from
the limit, sometimes described in the literature, where the velocity saturates along with constant field
and uniform carrier density in the situation we describe, velocity and field are not uniform.
Henceforther when we refer to ‘saturation’ we refer to this effect of saturating the density of states
and not to a saturation of drift velocity. In the charge-carrier density saturation limit, the internal
diffusion barrier height, g¢q;¢r, will be exactly equal to zero.

Assuming boundary conditions set through eq. 3 at the device edges, a constant charge-carrier
density at the metal/semiconductor interfaces is achieved when the injection barriers and the
effective density of states in the semiconductor (N¢) are specified,



Ninterface = N €XP (_ %) (6)
From this definition of the contacts the upper limit for the charge-carrier density at the
boundaries will then be nj,terface = Nc given that the injection barriers are vanishing (and not
negative).
The charge-carrier density inside the device, n, is given from the relative position of the
semiconductor Fermi level, E§“, and the conduction band edge, E, through,

n = N¢ exp (— ECI;%;C) (7)

Neglecting injection barriers for the moment, when a large voltage is applied, and a large number
of charge carriers are injected into the device from the electrodes (E¢ — EF“ — 0), the carrier
density will tend towards uniformity across the entire thickness of the device (n = Nipterface =
N¢). In this case, the semiconductor acts like a metal, the electric field inside the device is
negligible, and the electric field across the semiconductor arise solely from the applied voltage,
F =V/L,i.e., arising from the charge-carriers accumulated at the contacts. With the inclusion of
injection barriers, the limit for saturation is given as Ec — Eg® = q@iyj, and the saturation

current density, in this high voltage limit, is given by[22][33][34],

_ v _ q®inj
J= qunNcLeXp( T ) (8)

which is Ohm’s law modified for injection limitation through eq. 6. Note that eq. 8 is only truly
valid given that q¢;,; > 2kgT (see fig. S1) and that velocity saturation can be ignored (which

should be the case when ¢;,; > 2kgT).

By comparing the three equations governing the low, intermediate and high voltage regimes,
namely eq. 1, 2 and 8, it is obvious that several regimes can dominate the current density as a
voltage is applied.

3.4.  The Mark-Helfrich equation

One of the commonly used analytical equations which describes SCLC charge transport in a
semiconductor with traps assumed in the form of localised charge carriers in exponential tails
(fig. 2b),

h = n, exp (EE:) 9

where n, is the trap density per unit energy right below the band edge (n; = N;/E., where N, is
the trap density), E¢, is the characteristic energy, and E is the energy measured from the
transport level; is the Mark-Helfrich (MH) equation[7][9], which for an electron-only device is
given by,

= gl-1 Eréol Uopeyitt pia
= tnNets {Nt(l+1)} {l+1} L2l+1 (10)

where q is the elementary charge, | = E.,/kgT, and N, is the effective density of states. Equation
10 correctly predicts that exponential tail states in the band gap give rise to a stronger power-
law dependence of voltage on current than expected from the MG law in the intermediate voltage
regime. However, it was recently shown that this equation is not accurate since it fails to account



for diffusion currents, which can make a significant contribution to the total current, especially
when traps are present[12]. The Mark-Helfrich equation is however still a useful qualitative tool
even though the equation is not quantitatively correct.

3.5.  Slope analysis

It is common to plot SCLC current density-voltage profiles on a double logarithmic scale, since
most information about the J-V curve is shown in this way. It is however convenient to monitor
current regimes by considering the slope, m, of the current density-voltage curve on a log-log
scale[33],

__dlog J
~ dlog V' (11)

From this definition, the current density will depend on the power of the voltage through,
J o ), (12)

The initial linear regime will then follow m = 1 (eq. 1), the MG law will have m = 2 (eq. 2), while
the saturation current will again follow m = 1 (eq. 8). As will be shown in the results section,
plotting J-V curves alongside m-V curves is a powerful tool when analysing SCLC.

3.6.  Summary of the theory section

For the understanding of the results of this paper, the most important findings from the theory
section are that even in the ideal, trap-free system, the current of a single-carrier device shows
three regimes as a function of voltage. For low voltages, the J-V regime is linear due to moving
electrode effect (eq. 1). For intermediate voltages, the MG law suggests that the current changes
with 12 (eq. 2). For high voltages, the charge density becomes spatially constant, and the current
becomes Ohmic and depends on this spatially constant charge density given essentially by the
density of states and the injection barrier heights (eq. 8). In the presence of traps, qualitatively
the same effects happen but they are quantitatively affected by the charge carriers in the traps.
The three regimes for different voltage ranges may be overlapping depending on thickness and
injection barriers and therefore there may be situations where the intermediate regime needed
for the application of the MG law partly disappears. The disappearance of the MG regime will be
a central point for the results section of this paper, and is studied through the utilization of a drift-
diffusion simulation solver.

4. Drift-diffusion simulations

The drift-diffusion simulations were performed using a commercially available device simulator
called Advanced Semiconductor Analysis (ASA)[35]. ASA solves Poisson’s equation numerically,

Vip(x) = - (13)

€ofr

along with the drift-diffusion equations for electrons and holes in one dimension,

~ 9 = D, D o F (0, (14)

q n ax
Jp(x) dp (x)
pq =-D, Zxx + () up F (x). (15)



In the above three equations (eqs. 13, 14 and 15), ¢ is the electrical potential, p is the total charge
density, J is the current density, D is the Einstein-Smoluchowski diffusion coefficient (D =
ukgT/q),n and p are the charge-carrier densities for either electrons or holes, and F is the electric
field. Traps are modelled according to eq. 9, with the free and localised charge-carrier populations
governed by Shockley-Read-Hall statistics[8][31][36]. The boundary conditions are set by the
injection barrier heights through eq. 6. Electron-only devices with Ohmic contacts (q¢;,; = 0 eV)
and non-Ohmic contacts (q¢;,; > 0 eV) for both injection and extraction (simultaneously) are
considered. It should here be noted that some error is introduced when using Boltzmann
statistics, rather than Fermi-Dirac statistics, close to degeneracy. However, since for most realistic
cases qoin; > 2kgT eV anyway, we will use Boltzmann statistics for the numerical analysis (see

fig. S1). Furthermore, it is not possible to evaluate the integrals for the analytical derivations
when using Fermi-Dirac statistics (eq. S15). The relative permittivity, &, for conjugated organic
materials is often cited to be around 3[31][37][38], which is much less than for many frequently
used inorganic semiconductors (> 10)[39] or lead halide perovskite materials (~ 30)[40]. We
will later show how the choice of dielectric constant value affects the results. Charge carrier
mobilities differ strongly with the choice of material, however, when a sole charge-carrier type is
present, recombination can be neglected, and for that reason the charge mobility only affects the
magnitude of the current and not the regime transitions (see fig. S2). Since typical values in
organic materials used for organic photovoltaics are around p, = 10™* cm2/Vs, we will rather
arbitrarily use this as a value. The effective density of states for organic materials is not well
defined, but values are typically cited to be around Nc = Ny = 101° cm3[8][31][41], which is not
too different from the values cited for inorganic materials. The band-gap of semiconductors used
for solar cells range between 1.1 eV and 2.1 eV, so the simulations will arbitrarily be conducted
on arepresentative 2 eV band-gap material. The value of the band gap only affects the magnitude
of the intrinsic charge-carrier density, which will still be much less than the magnitude of the
equilibrium charge-carrier density[27]. The series resistance potentially arising from the
contacts, and the shunt resistance which is important in the case where a large number of
pinholes are present, are neglected in this discussion. Neglecting the shunt resistance is a fair
assumption since shunt currents mostly manifest themselves at low voltages when a large built-
in voltage is present in the device. The series resistance can be neglected when the product of the
equilibrium charge-carrier density and mobility of the semiconductor is low relative to the
conductivity of the contact electrodes, which is usually the case for low mobility semiconductors.
Bipolar transport is not considered (bipolar devices represent a separate case with its own
pitfalls and we do not address these in this paper). For all simulations the temperature, T, is
assumed tobe T = 300 K.

5. Simulation results

The analytical equations governing the low, intermediate and high voltage regimes (eqs. 1, 2 and
8, respectively) are compared to numerical drift-diffusion simulations of intrinsic
semiconductors in either ideal (Ohmic) or non-ideal (non-Ohmic) single-carrier devices. Because
the results will depend strongly on the thickness of the device, we will present most data for 50,
100 and 500 nm devices.

5.1. Ohmic contacts

Figure 3a shows J-V profiles of trap free 50, 100 and 500 nm electron-only devices with Ohmic
contacts (q¢p = 0.0 eV). Fits with the ME equation (eq. 1) and the MG law (eq. 2) to the 500 nm
device is shown as solid lines. Figure 3b shows J-V profiles of electron-only devices with Ohmic
contacts and traps in the form of exponential tails states extending from the transport levels, i.e.,
from the conduction and valence band edges (E, = 0.05 eV and n, = 102° cm-3eV-1). Figure 3¢



shows the slopes (eq. 11) of the J-V curves in figs. 3a and b as a function of voltage. For the trap
free single-carrier devices, the onset for the increase in the slope away from a linear dependence
(m = 1) atlow voltages occur at the same voltage, Vx, for all three thicknesses. It is also seen, that
for a 50 nm device, the slope does not reach, and retain, a value of m = 2 but rather m = 1.9,
which decreases towards unity. As the thickness of the semiconductor is increased to 100 nm, the
maximum slope increases (m = 1.95), but also tends back towards unity at high voltages. For the
devices containing traps, the slope is seen increase to above m = 2 for all three thicknesses, but
does not reach the same value for the maximum slope value. The MH equation (eq. 10) predicts
thatm = 1+ E,/kgT, which would reach a value of m = 2.92 for all three thicknesses. However,
the values for the slope maxima are m = 2.56 and m = 2.70 for the 50 and 100 nm device
respectively and is approaching what is expected from the Mark-Helfrich equation for the 500 nm
device (m = 2.86). Figure 3d shows the maximum slope values for a series of single-carrier
devices as a function of increased thicknesses and dielectric constants. The deviation of the slope
maximum from m = 2 is seen to be more profound as the dielectric constant is increased towards
values typical for inorganic and hybrid semiconductors.
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Figure 3 - a) Numerically calculated current density-voltage profiles for trap
free 50, 100 and 500 nm electron-only devices with Ohmic injection. Fits with
the ME equation (eq. 1) and the MG law (eq. 2) are shown as solid lines. b)
Current density-voltage profiles for 50, 100 and 500 nm electron-only devices
with Ohmic injection and traps (Ech = 0.05 eV, nt= 1020 cm-3eV-1). c) Slope-voltage
profiles showing the voltage of the onset to drift dominated currents, Vx (the
expected slopes for the MG law and the MH eq. are shown as dashed lines). d)
Maximum slope for devices with increasing thickness showing the deviation of
the slope from the value of 2 (dashed line) for the cases of a dielectric constant
similar to organic (&r = 3, solid line), inorganic (er= 11, dot-dashed line) and lead-
halide perovskites (er = 30, dotted line).



5.2. Non-Ohmic contacts

The numerical results shown in fig. 3 are for the cases of ideal devices, where perfect injection is
achieved through Ohmic contacts. However, a more realistic case will be when the injection
contacts are non-Ohmigc, i.e., the injection barriers at the device boundaries are finite, q(,bin]- >
0eV.

It has previously been reported that devices with 0.2 eV barrier heights still show nearly Ohmic
carrier injection[42]. The effect of injection barriers heights is however highly dependent on the
thickness of the probed semiconductor, and a thin device (50 nm) will be influenced to a higher
degree than a thick device (500 nm) as seen in fig. S3. Figure 4a shows the slope of a 100 nm
device as the injection and extraction barriers are simultaneously increased (0, 0.026, 0.052, 0.1
and 0.2 eV). The maximum slope value decreases with increasing injection barrier height while
the slope maximum position shifts to lower voltages. A transition to a linear regime at high
voltages is observed. Figure 4b shows that the voltage of the transition to the linear regime scales
with L™2, and fig. 4c shows that the transition scales with an exponential term containing the
injection barrier height.

Figure 3c shows that the maximum slope increases beyond m = 2 when a significant density
of traps is present. However, fig. 4d shows that with a combination of traps and injection
limitation a slope maximum with m < 2 can be achieved. From this it is clear that with a certain
combination of traps and injection limitation m = 2 could be achieved leading to a wrongful
analysis with the MG law.
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Figure 4 - a) Slope-voltage curves of a 100 nm device with increasing injection
barriers. b) Slope as a function of V/L? for thicknesses of 50, 100 and 500 nm
electron only devices. The voltage axis was corrected in order to show L? scaling
for the transition to Ohmic saturation currents (eq. 17). c) Slopes of a 100 nm
device with increasing injection barriers when the voltage axis is corrected for
by the exponential term governing injection limitation (eq. 6). The voltage onset



for Ohmic currents is seen to scale accordingly, further validating eq. 17. d)
Slope-voltage curves of a 50 nm device with injection limitation and exponential
band tails (Ec = 0.05 eV, nt = 1020 cm-3eV-1).

5.3.  Fitting with the Mott-Gurney law and the moving electrode equation

The MG law can only be fitted to J-V curves where a slope of 2 is observed. In figs. 3b and ¢, and in
fig. 4a it is seen that in the case of a device with a realistic thickness and injection barriers, a slope
of 2 is never observed. Despite it being impossible to fit the MG law even in the ideal case, and
even less so for devices with realistic contacts, the MG law might still yield reasonable results if
the mobility is calculated using values for the voltage and current density around the region of
maximum slope. This means, that eq. 2 is evaluated at V = V(m,.x). This will, of course, cause
this “fit” with the MG law to intersect the J-V curve (since the MG has m = 2 and mmax < 2 even for
the thin ideal devices).

In order to assess the error introduced when using eq. 1 or eq. 2 to obtain the charge carrier
mobility, the equations were “fitted” to numerically calculated J-V curves in the case of Ohmic and
non-Ohmic contacts as a function of the active layer thickness.

a) b)

‘uMG /‘uinput
°
’uME /'uinpu(
o

0.01} 0.01}
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Thickness [nm] Thickness [nm]
c) 10 T T T T
w. injection limitation
10° and traps yieldingm = 2
_ 0.1eV
2 o1
= 10
2 0.2eV
< 102
-3 / 4
Rl e,
L =100 nm

0-4 1 1 1 1
0.05 0.06 007 0.08 0.09 0.10
Characteristic energy [eV]

Figure 5 - Extracted mobility using analytical equations when the injection
barriers are increased (0.1, 0.2 & 0.3 eV); a) extraction of mobility when fitting
with the MG law at the slope maximum, and b) extraction of the mobility when
fitting with the moving-electrode equation (eq. 5). The values are normalized
with respect to the input value for the mobility. c) Fitting results with the MG
law when m = 2 due to a combination of tail states and injection barriers (as
shown in fig. S4).

Figure 5a shows the obtained charge-carrier mobility when fitting with the MG law (eq. 2) relative
to the electron mobility used as an input (inpur = 10-4 cm2/Vs). Figure 5b is the equivalent graph



for fitting with the ME equation (eq. 1). The ME equation was fitted between 0 and 0.1 V, as this
range is seen to be linear for both cases (see figs. 3b & 4a). However, this fit is not always
physically correct, as non-Ohmic contacts reduce the overall current and the ME equation cannot
account for this. For Ohmic contacts it is seen that both egs. 1 and 2 yield good results even at
very small thicknesses (~ 10 nm). That the MG law yields good results is rather surprising since
the slope maximum in this case is 1.6, i.e., substantially less than m = 2. The predicted mobility
when using eq. 1 is, surprisingly, less correct as compared to using eq. 2. It is seen that when small
injection barriers are added (¢;,; = 0.1 eV), even though the slope maximum will not reach m =
2, the mobility can still be estimated within a reasonable accuracy using the MG law, provided
that the device is not too thin (> 50 nm). When the injection barriers are increased to 0.2 eV, the
MG law significantly deviates for small thicknesses, whereas the ME equation deviates at all
thicknesses investigated here. With 0.3 eV barrier heights, both equations deviate dramatically
for the calculated thicknesses. Figure 5c¢ shows the ratio of the obtained mobility using the MG
law to the input mobility when traps and injection limitation were included in a 100 nm device in
order to force m = 2 (the trap characteristics that were needed for the resulting J-V curve to have
m = 2 were different in each case and are shown in fig S4). It is quite apparent that the mobility
can be greatly underestimated even though the equation was fitted to a J-V curve that appeared
to be obtained from an ideal device.

6. Analytical results

In order to give an analytical explanation to the drop in the maximum slope from m = 2 to much
lower values at intermediate voltages, the cross-over voltages, denoting the transition between
transport regimes, are discussed.

6.1.  Transition from low voltage to the Mott-Gurney regime

The temperature dependent cross-over voltage between the low voltage regime and the MG
regime, observed in figs. 3a and c, has previously been derived, by equating the ME equation (eq.
1) with the MG law (eq. 2), to be[30],

_ 322 kgT

Vs :
X s g

(16)

This equation replaced the onset equation, Vx = (8/9) {(nqL?)/(go&;)}, derived by Mark &
Lampert (which stated that the onset was thickness dependent) when dealing with symmetric
single-carrier devices of intrinsic semiconductors with Ohmic contacts[13]. At room temperature,
the onset voltage, eq. 16, approximately gives 0.9 V, and is not affected by the magnitude of
injection barriers (see fig. 4a).

6.2.  Transition from the Mott-Gurney regime to saturation

The cross-over voltage from the MG regime to the saturation regime can be derived by equating
the MG law (eq. 2), with the saturation current equation (eq. 8), which includes a term accounting
for the reduction of the charge-carrier density at the boundaries due to poor injection,

8 qL?
Vsat = 3
9 go&r

N¢ exp (— %). (17)

From eq. 17 is seen that the onset to the Ohmic saturation current follows an L? thickness scaling,
which is also seen from the numerical calculations in fig. 4b. Contrary to the onset from the low
voltage regime to the MG regime, eq. 16, the effect of the injection barriers is to shift the cross-
over voltage by the exponential term. This effect is seen from the numerical calculation in fig. 4c.
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Figure 6 - a) Vsat as a function of device thickness with varying injection barrier
heights (0, 0.1 and 0.2 eV). The onset to the MG regime, Vx, is shown as a black
dashed line. Vsat(0.0 eV, 100 nm) = 53.6 V, whereas Vsat(0.2 €V, 100 nm) = 0.2446
V, i.e,, much lower than Vx = 0.9 V. The pink region shows the situation where
the two linear regimes overlap and the MG law cannot express the intermediate
voltage regime. b) Electron concentration at 0 V (dashed lines) and 5 V (solid
lines) in a 100 nm device with and without injection barriers, as shown by black
colours and green colours (the value for the effective density of states is shown
for reference). The carrier density as calculated from eq. 5 is shown as a dot-
dashed blue line.

Figure 6a shows calculations of eq. 17 as a function of device thickness with either perfect
injection through Ohmic contacts, q¢;,; = 0.0 eV, or with non-Ohmic contacts with a small
injection barrier, q¢;,; = 0.1 eV or 0.2 eV. The thickness independent cross-over voltage to the
MG regime, Vy, is shown by the black dashed line. It is seen that, under certain conditions, the
onset to the saturation current is occurring before the current has transitioned into the MG
regime. To supplement this, fig. 6b shows that when 5 V is applied across a 100 nm device with
Ohmic contacts, the electron density in the device approximately follows the electron density
derived from assuming drift-only transport (eq. 5), i.e,, the current approximately follows the MG
law. On the contrary, when 5 V is applied to an injection limited device (0.2 injection barriers),
the electron density is completely uniform across the depth of the device, i.e., the current regime
has transitioned into saturation without transitioning through the MG regime.

6.3.  Maximum slope

The average value of the MG charge-carrier concentration (eq. 5) is given by,

1 (L1 [Jeger
(n>MG = Zfo E Zflilgx dx' (18)

which yields an equation for the voltage at the slope maximum, Vy,y,

4 qL%(n)
VMax = g% (19)

The voltage values predicted from eq. 19 coincide with the maximum slopes from the numerical
calculations in fig. 3c. The previous SCLC onset by Mark & Lampert predicted that the onset from
the low voltage regime to the MG regime follows a L2 scaling. However, we can see from eqs. 17
and 19, that it is the maximum value for the slope and the transition to the Ohmic saturation
regime that follows the L2 scaling rather than the onset to the MG regime. Moreover, eq. 19
predicts that the maximum slope shifts to lower voltages when the carrier density decreases
(with a fixed thickness), which is what is observed in fig. 4a.



7. Discussion

We observe that for practically relevant thicknesses (100 nm) there is a slight deviation from the
behaviour predicted by the MG law when no injection barriers are present (see figs. 3c and d).
This deviation is sensitive to thickness as shown by the calculated behaviour of a 50 nm thick film
which shows a larger deviation from the MG law than either a 100 or a 500 nm film (figs. 3c and
d). However, the deviation from the MG law becomes strikingly relevant as soon as one considers
practically relevant injection barriers (see figs. 4a and 5a) even for a 100 nm device.

When a large voltage is applied across a thin device (50 nm) with Ohmic contacts, it is seen that
the current is dominated by saturation of the charge-carrier density (see fig. 3b). Even though the
transition to complete saturation happens at a very high voltage, the maximum value of the slope
is reduced to around m = 1.9. The reduction in the slope value makes a fit with the MG law
impossible. Even though the reduction in the slope maximum away from m = 2 fora 50 nm device
with Ohmic contacts is more apparent than for a 100 nm, some deviation is still seen for the 100
nm device (see fig. 3c).

With injection barriers introduced at the interfaces, a dramatic reduction of the maximum
slope values is observed (see fig. 4a). Interestingly, the cross-over voltage from the linear regime
atlow voltage is seen to be neither affected by the thickness of the device nor the injection barrier
heights (see figs. 3c and 4a). This observation from the numerical calculations agrees with eq. 16.
Furthermore, the position of the maximum slope value shifts to lower values for the voltage both
when the thickness is reduced and when injection barriers are increased. This is explained from
a reduction in the charge-carrier density and agrees with eq. 19.

From figs. 4b and c it is seen that the onset to the saturation regime, V;,;, changes both with
thickness and injection barrier heights. This agrees with eq. 17. Figure 6a shows comparisons of
calculations of Vg, with varying injection barrier heights to Vx. When Vj,, is roughly equal to or
lower than the voltage onset to Vx, a lowering of the slope away from m = 2 at all voltages is
observed. This is because the current has transitioned into the saturation regime before
becoming a space-charge-limited drift current, i.e., the two linear regimes overlap and the MG
regime has disappeared (see fig. 6b). In fig. 6a it is also seen that the value for Vg, is close to Vx
for the 10 nm device with Ohmic contacts, whereas the 100 nm device has a much higher onset
voltage to saturation currents. This explains why the slope of a thin device has a low maximum
value around, where a thicker device has a maximum value approaching m = 2.

The effect of the slope maximum lowering was seen to be even more profound when realistic
(non-Ohmic) contacts are used (see fig. 4a). The lowering of the slope is assigned to the carrier
concentration being almost uniform even before a voltage is applied (see fig. 6b). When electrons
are injected into the almost saturated device, the charge carrier density will then quickly tend
towards uniformity, and the current will follow eq. 8 at a much lower voltage (Vopmic < 1V for a
100 nm device when q¢;,; = 0.2 eV). So even for ideal semiconductors, this transition to
saturation currents, which happens at very low voltages for devices with a realistic
semiconductor thickness and realistic injection barriers, makes fitting with the MG law
meaningless since the current density is never proportional to V2. This also means thatif m > 2
is observed for thin devices, then an extrinsic mechanism such as traps or energetic disorder must
be present, and in such cases the MG law is again not applicable since this model was developed
for intrinsic semiconductors (see fig. 4d). Furthermore, if m = 2 is in fact observed for reasonably
thin devices, a combination of traps and injection limitation could be present in the device,
rendering analysis with the MG law meaningless regardless (see fig. 5c).

If the MG law is used to fit to SCLC J-V curves when small injection barriers (0.1 eV) are present,
the obtained mobility will not deviate dramatically given that the thickness of the probed
semiconductor is larger than 50 nm (see fig. 5a). For slightly larger injection barriers (0.2 eV) an
underestimation of the mobility of almost an order of magnitude can be expected for a 50 nm



device. Measuring a thicker device (100 nm) will yield a more accurate value for the mobility, but
will still be underestimated.

In practice, SCLC active layer thicknesses are usually of order of 50 nm or above, but they may
suffer injection barriers of several tenths of an eV due to limited range of available contacts[38].
Moreover, practical devices usually contain some density of traps[17]. Therefore the risks that
we highlight here in the interpretation of SCLC data using the MG law are relevant for common
practice in mobility estimation, especially with organic semiconductors. Figures 5 and 6 in
combination can be used as a helpful tool to predict when, and by how much, the charge-carrier
mobility will be wrongly estimated when either using the MG law or the ME equation when using
devices without Ohmic contacts to measure semiconductors with or without some degree of

trapping.

8. Conclusions

By comparing the results from the analytical equations with numerical calculations it is shown
that a strong deviation from the Mott-Gurney law towards an Ohmic saturation current is seen
when simulating single-carrier devices of intrinsic semiconductors with realistic (non-Ohmic)
injection contacts. This is shown to be due to an increased accumulation and eventual saturation
of charge carriers inside the device when a voltage is applied. The onset for these Ohmic currents
is shown to follow a square scaling law with thickness and an exponential scaling law with
injection barrier heights, meaning that this phenomenon is even more profound, and occurring
at even lower voltages, when the device thickness of the material is decreased and/or when the
injection barrier heights are increased towards realistic values. The thinner the device and larger
the injection barriers, the more difficult it becomes to fit the Mott-Gurney law to the current
density-voltage curves, and the larger the deviation of the obtained mobility values compared to
the real mobility values becomes. The deviation of the charge carrier mobility when determined
using the Mott-Gurney law, or the Moving Electrode equation, is quantified, and it is shown that
the mobility can be underestimated by several orders of magnitude compared to when obtained
using numerical fitting. In order to use the discussed analytical expressions for analysis of SCLC
data from intrinsic single-carrier devices, it is important to minimize injection barriers and to
measure devices with thicknesses larger than 50 nm. This analysis can be used to help design the
correct device architecture for charge-carrier mobility measurements while help to estimate the
error involved in the extracted values when measuring intrinsic semiconductors.

9. Acknowledgements

JAR, SAH, DM and JN would like to thank the Engineering and Physical Sciences Research Council
(EPSRC grant nos. EP/K030671/1 and EP/K010298/1) and the Centre of Doctoral Training on
Plastic Electronics (EP/G037515) for funding. JAR would like to thank Dr. Piers Barnes, Dr.
Alasdair Campbell, Dr. Xingyuan Shi and Ms. Suki Wong for fruitful discussions.

10. References
[1] R. W. Smith and A. Rose, “Space-Charge-Limited Currents in Single Crystals of Cadmium Sulfide,” Phys. Rev.,
vol. 97, no. 6, pp. 1531-1537, 1955.

[2] M.-H. Chen et al, “Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene
Copolymer/Fullerene Bulk Heterojunctions,” Adv. Mater., vol. 21, no. 42, pp. 4238-4242, Nov. 2009.

[3] R. Steyrleuthner et al., “Bulk Electron Transport and Charge Injection in a High Mobility n-Type
Semiconducting Polymer,” Adv. Mater., vol. 22, no. 25, pp. 2799-2803, Jul. 2010.

[4] Z. He et al, “Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill
Factor in Polymer Solar Cells.,” Adv. Mater., vol. 23, no. 40, pp. 4636-43, Oct. 2011.



[5]

(6]
(7]

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

J. C. Blakesley et al., “Towards Reliable Charge-Mobility Benchmark Measurements for Organic
Semiconductors,” Org. Electron., vol. 15, no. 6, pp. 1263-1272, 2014.

N. F. Mott and R. W. Gurney, Electronic Processes in lonic Crystals. Oxford University Press, 1940.

P. Mark and W. Helfrich, “Space-Charge-Limited Currents in Organic Crystals,” J. Appl Phys., vol. 33, no. 1, pp.
205-215, 1962.

T. Kirchartz, “Influence of Diffusion on Space-Charge-Limited Current Measurements in Organic
Semiconductors.,” Beilstein J. Nanotechnol., vol. 4, pp. 180-188, Jan. 2013.

A. Rose, “Space-Charge-Limited Currents in Solids,” Phys. Rev., vol. 97, no. 6, pp. 1538-1544, Mar. 1955.

M. A. Lampert, “Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps,” Phys. Rev.,
vol. 103, no. 6, pp. 1648-1656, 1956.

P. N. Murgatroyd, “Theory of Space-Charge-Limited Current Enhanced by Frenkel Effect,” J. Phys. D Appl.
Phys., vol. 3, pp. 151-156, 1970.

J. Fischer, W. Tress, H. Kleemann, J. Widmer, K. Leo, and M. Riede, “Exploiting Diffusion Currents at Ohmic
Contacts for Trap Characterization in Organic Semiconductors,” Org. Electron., vol. 15, no. 10, pp. 2428-2432,
Oct. 2014.

M. Lampert and P. Mark, Current Injections in Solids. Academic Press, 1970.

N. . Craciun, |. ]. Brondijk, and P. W. M. Blom, “Diffusion-Enhanced Hole Transport in Thin Polymer Light-
Emitting Diodes,” Phys. Rev. B, vol. 77, p. 035206(1-5), 2008.

H. T. Nicolai, M. M. Mandoc, and P. W. M. Blom, “Electron Traps in Semiconducting Polymers: Exponential
versus Gaussian Trap Distribution,” Phys. Rev. B, vol. 83, no. 19, p. 195204, May 2011.

J. Dacuiia and A. Salleo, “Modeling space-charge-limited currents in organic semiconductors: Extracting trap
density and mobility,” Phys. Rev. B, vol. 84, no. 19, p. 195209, Nov. 2011.

H. T. Nicolai et al, “Unification of trap-limited electron transport in semiconducting polymers.,” Nat. Mater.,
vol. 11, no. 10, pp. 882-7, Oct. 2012.

J. Dacuiia, W. Xie, and A. Salleo, “Estimation of the Spatial Distribution of Traps using Space-Charge-Limited
Current Measurements in an Organic Single Crystal,” Phys. Rev. B, vol. 86, no. 11, p. 115202, Sep. 2012.

S. Holliday et al, “A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic
Photovoltaics,” J. Am. Chem. Soc., vol. 137, no. 2, pp. 898-904, Jan. 2015.

R. de Levie, N. G. Seidah, and H. Moreia, “Transport of Ions of One Kind through Thin Membranes,” J. Membr.
Biol, vol. 10, pp. 171-192, 1972.

A. A. Grinberg and S. Luryi, “Space-Charge-Limited Current and Capacitance in Double-Junction Diodes,” J.
Appl. Phys., vol. 61, no. 3, pp. 1181-1189, 1987.

J. G. Simmons, “Richardson-Schottky Effect in Solids,” Phys. Rev. Lett., vol. 15, no. 25, pp. 967-968, 1965.

D. Baran et al, “Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and
stable small molecule acceptor ternary solar cells,” Nat. Mater., vol. 16, no. 3, pp. 363-369, 2017.

H. K. H. Lee et al, “The Role of Fullerenes in Environmental Stability of Polymer:Fullerene Solar Cells,” Energy
Environ. Sci., 2017.

J. G. Simmons, “Theory of Metallic Contacts on High Resistivity Solids - I. Shallow Traps,” J. Phys. Chem. Solids,
vol. 32, pp. 1987-1999, 1971.

H. K. Henisch, Semiconductor Contacts: An Approach to Ideas and Models, 1st ed. Oxford Science Publications,
1984.

J. A. Rohr, T. Kirchartz, and J. Nelson, “On the Correct Interpretation of the Low Voltage Regime in Intrinsic
Single-Carrier Devices,” J. Phys. Condens. Matter, vol. 29, no. 20, p. 205901(9), 2017.

J. C. Scott and G. G. Malliaras, “Charge Injection and Recombination at the Metal - Organic Interface,” Chem.
Phys. Lett,, vol. 299, no. January, pp. 115-119, 1999.

G. a. H. Wetzelaer and P. W. M. Blom, “Ohmic Current in Organic Metal-Insulator-Metal Diodes Revisited,”
Phys. Rev. B, vol. 89, no. 24, p. 241201, Jun. 2014.

S. L. M. van Mensfoort and R. Coehoorn, “Effect of Gaussian Disorder on the Voltage Dependence of the
Current Density in Sandwich-Type Devices based on Organic Semiconductors,” Phys. Rev. B, vol. 78, p.
085207(16), 2008.

T. Kirchartz, B. E. Pieters, ]. Kirkpatrick, U. Ray, and J. Nelson, “Recombination Via Tail States in
Polythiophene:Fullerene Solar Cells,” Phys. Rev. B, vol. 83, no. 11, p. 115209, Mar. 2011.

F. Deledalle et al., “Understanding the Effect of Unintentional Doping on Transport Optimization and Analysis



[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

in Efficient Organic Bulk-Heterojunction Solar Cells,” Phys. Rev. X, vol. 5, no. 1, p. 11032, Mar. 2015.

M. Kryszewski and A. Szymanski, “Space Charge Limited Currents in Polymers,” . Polym. Sci. Macromol. Rev.,
vol. 4, no. 1, pp. 245-320, 1970.

H. Scher, D. Pai, and |. Mort, “Criterion for determining the origin of Ohmic currents in insulators,” J. Appl
Phys., vol. 44, no. 6, pp. 2908-2909, 1973.

M. Zeman and J. Krc, “Optical and Electrical Modeling of Thin-Film Silicon Solar Cells,” J. Mater. Res., vol. 23,
no. 4, pp. 889-898, Jan. 2011.

W. Shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons,” Phys. Rev., vol. 87, no.
5, pp- 835-842, 1952.

K. K. H. Chan, S. W. Tsang, H. K. H. Lee, F. So, and S. K. So, “Charge Injection and Transport Studies of Poly(2,7-
carbazole) Copolymer PCDTBT and Their Relationship to Solar Cell Performance,” Org. Electron., vol. 13, no.
5, pp. 850-855, May 2012.

D. Poplavskyy and J. Nelson, “Nondispersive Hole Transport in Amorphous Films of Methoxy-Spirofluorene-
Arylamine Organic Compound,” J. Appl. Phys., vol. 93, no. 1, p. 341, 2003.

L. Strzalkowski, S. Joshi, and C. R. Crowell, “Dielectric Constant and its Temperature Dependence for GaAs,
CdTe, and ZnSe,” Appl. Phys. Lett., vol. 28, no. 6, p. 350, 1976.

F. Brivio, A. B. Walker, and A. Walsh, “Structural and Electronic Properties of Hybrid Perovskites for High-
Efficiency Thin-Film Photovoltaics from First-Principles,” APL Mater., vol. 1, no. 4, p. 42111, 2013.

G. R. Hutchison, Y. Zhao, B. Delley, A. ]. Freeman, M. A. Ratner, and T. . Marks, “Electronic Structure of
Conducting Polymers : Limitations of Oligomer Extrapolation Approximations and Effects of Heteroatoms,”
Phys. Rev. B, vol. 68, p. 035204(13), 2003.

A. K. Mahapatro and S. Ghosh, “Schottky Energy Barrier and Charge Injection in Metal/Copper-
Phthalocyanine/Metal Structures,” Appl. Phys. Lett., vol. 80, no. 25, p. 4840, 2002.

)



