001     844547
005     20240712113000.0
024 7 _ |a 10.1039/C7TA10945H
|2 doi
024 7 _ |a 2050-7488
|2 ISSN
024 7 _ |a 2050-7496
|2 ISSN
024 7 _ |a WOS:000425623600032
|2 WOS
024 7 _ |a altmetric:34251386
|2 altmetric
037 _ _ |a FZJ-2018-01954
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Ramírez Quiroz, César Omar
|0 0000-0002-6290-8925
|b 0
|e Corresponding author
245 _ _ |a Balancing electrical and optical losses for efficient 4-terminal Si–perovskite solar cells with solution processed percolation electrode
260 _ _ |a London [u.a.]
|c 2018
|b RSC
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1678092235_31683
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The unprecedented rise in efficiency of perovskite-based photovoltaics has sparked interest in semi-transparent devices, particularly for tandem structures. Despite promising reports regarding efficiency and reduced parasitic absorption, many devices still rely on processes from the gas phase, compromising both applicability and cost factors. Here, we report all-solution perovskite solar cells with improved infrared transparency ideally suited as top-cells for efficient multi-junction device configurations. We demonstrate the functionality of copper(I) thiocyanate as antireflective layer and as selective contact between the transparent conductive oxide and the perovskite. This concept allows us to fabricate an opaque device with steady state efficiency as high as 20.1%. By employing silver nanowires with robust environmental stability as the bottom electrode, we demonstrate different regimes of device performance that can be described through a classical percolation model, leading to semi-transparent solar cells with efficiencies of up to 17.1%. In conjunction with the implementation of an infrared-tuned transparent conductive oxide contact deposited on UV-fused silica, we show a full device average transmittance surpassing 84% between 800 and 1100 nm (as opposed to 77% with PEDOT:PSS as the selective contact). Finally, we mechanically stacked optimized perovskite devices on top of high performing PERL and IBC silicon architectures. The measured imputed output efficiency of the 4-terminal perovskite–silicon solar cell was 26.7% and 25.2% for the PERL–perovskite and IBC–perovskite, respectively.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
536 _ _ |a 1213 - Cell Design and Development (POF4-121)
|0 G:(DE-HGF)POF4-1213
|c POF4-121
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shen, Yilei
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Salvador, Michael
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Forberich, Karen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schrenker, Nadine
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Spyropoulos, George D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heumüller, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Wilkinson, Benjamin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 8
700 1 _ |a Spiecker, Erdmann
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Verlinden, Pierre J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Zhang, Xueling
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Green, Martin A.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Ho-Baillie, Anita
|0 0000-0001-9849-4755
|b 13
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-HGF)0
|b 14
|e Corresponding author
773 _ _ |a 10.1039/C7TA10945H
|g Vol. 6, no. 8, p. 3583 - 3592
|0 PERI:(DE-600)2702232-8
|n 8
|p 3583 - 3592
|t Journal of materials chemistry / A
|v 6
|y 2018
|x 2050-7496
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844547/files/c7ta10945h.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:844547
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)159457
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1213
|x 1
914 1 _ |y 2018
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MATER CHEM A : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MATER CHEM A : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IET-2-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21