001     844552
005     20240711101503.0
024 7 _ |a 10.1149/2.0511805jes
|2 doi
024 7 _ |a 0013-4651
|2 ISSN
024 7 _ |a 0096-4743
|2 ISSN
024 7 _ |a 0096-4786
|2 ISSN
024 7 _ |a 1945-7111
|2 ISSN
024 7 _ |a 2128/17926
|2 Handle
024 7 _ |a WOS:000431803900105
|2 WOS
037 _ _ |a FZJ-2018-01959
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Reshetenko, Tatyana
|0 0000-0002-4552-062X
|b 0
245 _ _ |a A Model for Extraction of Spatially Resolved Data from Impedance Spectrum of a PEM Fuel Cell
260 _ _ |a Pennington, NJ
|c 2018
|b Electrochemical Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522300789_23316
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report a novel approach to processing of impedance spectra of a PEM fuel cell. We split the cell into N virtual segments andlet each segment to have its own set of transport and kinetic parameters. The impedance of a single segment is calculated using ourrecent physics–based impedance model; the segments are “linked” by equation for the oxygen mass balance in the cathode channeltransporting the local phase and amplitude information from one segment to another. Thanks to this transport, the total cell impedancecontains information on the local transport and kinetic properties of the cell. We show that fitting the model cell impedance to theexperimental spectra yields the parameters of individual segments, i.e., the shape of the cell physical parameters along the cathodechannel.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kulikovsky, Andrei
|0 P:(DE-Juel1)129878
|b 1
|e Corresponding author
773 _ _ |a 10.1149/2.0511805jes
|g Vol. 165, no. 5, p. F291 - F296
|0 PERI:(DE-600)2002179-3
|n 5
|p F291 - F296
|t Journal of the Electrochemical Society
|v 165
|y 2018
|x 0013-4651
856 4 _ |u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.gif?subformat=icon
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.jpg?subformat=icon-1440
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.jpg?subformat=icon-180
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.jpg?subformat=icon-640
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844552/files/ECS-JESP-18-0342R-Kulikovsky.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844552/files/J.%20Electrochem.%20Soc.-2018-Reshetenko-F291-6.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844552
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129878
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21