000844590 001__ 844590
000844590 005__ 20240625095122.0
000844590 0247_ $$2doi$$a10.1371/journal.pone.0193454
000844590 0247_ $$2Handle$$a2128/17724
000844590 0247_ $$2pmid$$apmid:29474432
000844590 0247_ $$2WOS$$aWOS:000426049500110
000844590 037__ $$aFZJ-2018-01994
000844590 041__ $$aEnglish
000844590 082__ $$a500
000844590 1001_ $$00000-0003-1848-3963$$aNguyen, Trung Hai$$b0
000844590 245__ $$aInterfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion
000844590 260__ $$aLawrence, Kan.$$bPLoS$$c2018
000844590 3367_ $$2DRIVER$$aarticle
000844590 3367_ $$2DataCite$$aOutput Types/Journal article
000844590 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521549161_25115
000844590 3367_ $$2BibTeX$$aARTICLE
000844590 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844590 3367_ $$00$$2EndNote$$aJournal Article
000844590 520__ $$aProton transport at water/membrane interfaces plays a fundamental role for a myriad of bioenergetic processes. Here we have performed ab initio molecular dynamics simulations of proton transfer along two phosphatidylcholine bilayers. As found in previous theoretical studies, the excess proton is preferably located at the water/membrane interface. Further, our simulations indicate that it interacts not only with phosphate head groups, but also with water molecules at the interfaces. Interfacial water molecules turn out to be oriented relative to the lipid bilayers, consistently with experimental evidence. Hence, the specific water-proton interaction may help explain the proton mobility experimentally observed at the membrane interface.
000844590 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000844590 588__ $$aDataset connected to CrossRef
000844590 7001_ $$0P:(DE-Juel1)136680$$aZhang, Chao$$b1$$eCorresponding author
000844590 7001_ $$0P:(DE-HGF)0$$aWeichselbaum, Ewald$$b2
000844590 7001_ $$0P:(DE-HGF)0$$aKnyazev, Denis G.$$b3
000844590 7001_ $$0P:(DE-HGF)0$$aPohl, Peter$$b4
000844590 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author$$ufzj
000844590 773__ $$0PERI:(DE-600)2267670-3$$a10.1371/journal.pone.0193454$$gVol. 13, no. 2, p. e0193454 -$$n2$$pe0193454 -$$tPLoS one$$v13$$x1932-6203$$y2018
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.pdf$$yOpenAccess
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.gif?subformat=icon$$xicon$$yOpenAccess
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844590 8564_ $$uhttps://juser.fz-juelich.de/record/844590/files/journal.pone.0193454.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844590 8767_ $$8PAB217216$$92018-03-19$$d2018-03-20$$eAPC$$jDeposit$$lDeposit: PLoS$$zUSD 1495,-
000844590 909CO $$ooai:juser.fz-juelich.de:844590$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136680$$aForschungszentrum Jülich$$b1$$kFZJ
000844590 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b5$$kFZJ
000844590 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000844590 9141_ $$y2018
000844590 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844590 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844590 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844590 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844590 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000844590 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS ONE : 2015
000844590 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844590 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844590 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844590 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844590 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844590 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844590 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844590 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844590 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844590 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844590 920__ $$lyes
000844590 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000844590 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000844590 980__ $$ajournal
000844590 980__ $$aVDB
000844590 980__ $$aUNRESTRICTED
000844590 980__ $$aI:(DE-Juel1)IAS-5-20120330
000844590 980__ $$aI:(DE-Juel1)INM-9-20140121
000844590 980__ $$aAPC
000844590 9801_ $$aAPC
000844590 9801_ $$aFullTexts