000844593 001__ 844593
000844593 005__ 20210129233006.0
000844593 0247_ $$2doi$$a10.1016/j.geoderma.2017.11.024
000844593 0247_ $$2ISSN$$a0016-7061
000844593 0247_ $$2ISSN$$a1872-6259
000844593 0247_ $$2WOS$$aWOS:000424178600007
000844593 037__ $$aFZJ-2018-01997
000844593 041__ $$aEnglish
000844593 082__ $$a550
000844593 1001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b0$$eCorresponding author
000844593 245__ $$aShort-term impacts of forest clear-cut on P accessibility in soil microaggregates: An oxygen isotope study
000844593 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844593 3367_ $$2DRIVER$$aarticle
000844593 3367_ $$2DataCite$$aOutput Types/Journal article
000844593 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521540406_25115
000844593 3367_ $$2BibTeX$$aARTICLE
000844593 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844593 3367_ $$00$$2EndNote$$aJournal Article
000844593 520__ $$aForest clear-cuts may have severe effects on the soil structure and related nutrient cycling, though with yet unknown consequences for nutrient pools such as phosphorus (P) within microaggregates. We sampled the bulk mineral topsoil prior to clear cut as well as 1 and 2 years thereafter from the experimental forest site Wüstebach, Germany, and we assessed the degree of oxygen isotope exchange in HCl-extractable soil phosphate of two microaggregate size fractions (< 20 μm, 20–250 μm) after incubating soil with 18O-labeled water. We found that after the clear-cut, microaggregate phosphates exchanged significantly more oxygen with the incubation water than before clear cut. One and two years after clear cut, the respective δ18O values of soil phosphates (δ18OP,HCl) were elevated by 16 and 38% (< 20 μm) and by 43 and 53% (20–250 μm) than before the clear-cut, respectively, indicating that additional microaggregate P had been made available to biological P cycling. The degree of oxygen exchange after the clear-cut was significantly greater in larger soil microaggregates than in the smaller sized ones, reflecting that also at microaggregate level size controlled the increase in the bioavailability of P with changes in land management.
000844593 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000844593 588__ $$aDataset connected to CrossRef
000844593 7001_ $$0P:(DE-HGF)0$$aBauke, Sara L.$$b1
000844593 7001_ $$0P:(DE-HGF)0$$aTamburini, Federica$$b2
000844593 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b3
000844593 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.11.024$$gVol. 315, p. 59 - 64$$p59 - 64$$tGeoderma$$v315$$x0016-7061$$y2018
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.pdf$$yRestricted
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.gif?subformat=icon$$xicon$$yRestricted
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844593 8564_ $$uhttps://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844593 909CO $$ooai:juser.fz-juelich.de:844593$$pVDB:Earth_Environment$$pVDB
000844593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b0$$kFZJ
000844593 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b3$$kFZJ
000844593 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000844593 9141_ $$y2018
000844593 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844593 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844593 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844593 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000844593 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844593 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844593 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844593 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844593 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844593 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844593 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844593 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000844593 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844593 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844593 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000844593 980__ $$ajournal
000844593 980__ $$aVDB
000844593 980__ $$aI:(DE-Juel1)IBG-3-20101118
000844593 980__ $$aUNRESTRICTED