001     844593
005     20210129233006.0
024 7 _ |a 10.1016/j.geoderma.2017.11.024
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a WOS:000424178600007
|2 WOS
037 _ _ |a FZJ-2018-01997
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 0
|e Corresponding author
245 _ _ |a Short-term impacts of forest clear-cut on P accessibility in soil microaggregates: An oxygen isotope study
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521540406_25115
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Forest clear-cuts may have severe effects on the soil structure and related nutrient cycling, though with yet unknown consequences for nutrient pools such as phosphorus (P) within microaggregates. We sampled the bulk mineral topsoil prior to clear cut as well as 1 and 2 years thereafter from the experimental forest site Wüstebach, Germany, and we assessed the degree of oxygen isotope exchange in HCl-extractable soil phosphate of two microaggregate size fractions (< 20 μm, 20–250 μm) after incubating soil with 18O-labeled water. We found that after the clear-cut, microaggregate phosphates exchanged significantly more oxygen with the incubation water than before clear cut. One and two years after clear cut, the respective δ18O values of soil phosphates (δ18OP,HCl) were elevated by 16 and 38% (< 20 μm) and by 43 and 53% (20–250 μm) than before the clear-cut, respectively, indicating that additional microaggregate P had been made available to biological P cycling. The degree of oxygen exchange after the clear-cut was significantly greater in larger soil microaggregates than in the smaller sized ones, reflecting that also at microaggregate level size controlled the increase in the bioavailability of P with changes in land management.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bauke, Sara L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Tamburini, Federica
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 3
773 _ _ |a 10.1016/j.geoderma.2017.11.024
|g Vol. 315, p. 59 - 64
|0 PERI:(DE-600)2001729-7
|p 59 - 64
|t Geoderma
|v 315
|y 2018
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844593/files/1-s2.0-S0016706117312879-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844593
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21