000844597 001__ 844597
000844597 005__ 20210129233008.0
000844597 0247_ $$2doi$$a10.1016/j.geoderma.2017.10.028
000844597 0247_ $$2ISSN$$a0016-7061
000844597 0247_ $$2ISSN$$a1872-6259
000844597 0247_ $$2WOS$$aWOS:000424179800016
000844597 0247_ $$2altmetric$$aaltmetric:30079129
000844597 037__ $$aFZJ-2018-02001
000844597 041__ $$aEnglish
000844597 082__ $$a550
000844597 1001_ $$0P:(DE-Juel1)164361$$aSiebers, Nina$$b0$$eCorresponding author
000844597 245__ $$aBias in aggregate geometry and properties after disintegration and drying procedures
000844597 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844597 3367_ $$2DRIVER$$aarticle
000844597 3367_ $$2DataCite$$aOutput Types/Journal article
000844597 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1521539977_25110
000844597 3367_ $$2BibTeX$$aARTICLE
000844597 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844597 3367_ $$00$$2EndNote$$aJournal Article
000844597 520__ $$aIsolation and drying soil microaggregates and their building units are of crucial importance when studying their structure and function within different soil management systems. Our aim was to evaluate how different drying techniques preserve small aggregate building units after different disintegration steps. After applying fast wetting, slaking, or ultrasonic dispersion at 440 J mL− 1 to Cambisol topsoils under either long-term forest, grassland, or arable soil management, aggregate-size distributions were assessed using fast image analyses after optical particle-size assessment prior and after air- and freeze-drying. Microaggregates isolated by dry-sieving served as control. While ultrasonic dispersion significantly disintegrated soil aggregates into smaller units, slaking in water did not. Intriguingly, freeze-drying preserved the aggregate size distribution fairly well, with a reaggregation ranging between 1.2 and 10.1%. In contrast, air-drying led to substantial reaggregation of particles ranging between 20.4 and 44.9%. However, freeze-drying also led to slight deformation of particles and also to a redistribution of elements between size-fractions, the extent of which being different for the samples under different land-use. We conclude that ultrasonic treatment followed by freeze-drying is suitable to preserve the correct aggregate size of at least Cambisols, but the properties of the secondary particles may still not reflect true geometric forms and chemical properties.
000844597 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000844597 588__ $$aDataset connected to CrossRef
000844597 7001_ $$00000-0002-6069-7239$$aAbdelrahman, Hamada$$b1
000844597 7001_ $$0P:(DE-Juel1)168258$$aKrause, Lars$$b2
000844597 7001_ $$0P:(DE-Juel1)129427$$aAmelung, Wulf$$b3
000844597 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2017.10.028$$gVol. 313, p. 163 - 171$$p163 - 171$$tGeoderma$$v313$$x0016-7061$$y2018
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.pdf$$yRestricted
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.gif?subformat=icon$$xicon$$yRestricted
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844597 8564_ $$uhttps://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844597 909CO $$ooai:juser.fz-juelich.de:844597$$pVDB:Earth_Environment$$pVDB
000844597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164361$$aForschungszentrum Jülich$$b0$$kFZJ
000844597 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-6069-7239$$aForschungszentrum Jülich$$b1$$kFZJ
000844597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168258$$aForschungszentrum Jülich$$b2$$kFZJ
000844597 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129427$$aForschungszentrum Jülich$$b3$$kFZJ
000844597 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000844597 9141_ $$y2018
000844597 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000844597 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844597 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000844597 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEODERMA : 2015
000844597 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844597 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844597 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844597 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844597 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844597 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844597 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844597 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000844597 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000844597 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844597 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000844597 980__ $$ajournal
000844597 980__ $$aVDB
000844597 980__ $$aI:(DE-Juel1)IBG-3-20101118
000844597 980__ $$aUNRESTRICTED