001     844597
005     20210129233008.0
024 7 _ |a 10.1016/j.geoderma.2017.10.028
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a WOS:000424179800016
|2 WOS
024 7 _ |a altmetric:30079129
|2 altmetric
037 _ _ |a FZJ-2018-02001
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Siebers, Nina
|0 P:(DE-Juel1)164361
|b 0
|e Corresponding author
245 _ _ |a Bias in aggregate geometry and properties after disintegration and drying procedures
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521539977_25110
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Isolation and drying soil microaggregates and their building units are of crucial importance when studying their structure and function within different soil management systems. Our aim was to evaluate how different drying techniques preserve small aggregate building units after different disintegration steps. After applying fast wetting, slaking, or ultrasonic dispersion at 440 J mL− 1 to Cambisol topsoils under either long-term forest, grassland, or arable soil management, aggregate-size distributions were assessed using fast image analyses after optical particle-size assessment prior and after air- and freeze-drying. Microaggregates isolated by dry-sieving served as control. While ultrasonic dispersion significantly disintegrated soil aggregates into smaller units, slaking in water did not. Intriguingly, freeze-drying preserved the aggregate size distribution fairly well, with a reaggregation ranging between 1.2 and 10.1%. In contrast, air-drying led to substantial reaggregation of particles ranging between 20.4 and 44.9%. However, freeze-drying also led to slight deformation of particles and also to a redistribution of elements between size-fractions, the extent of which being different for the samples under different land-use. We conclude that ultrasonic treatment followed by freeze-drying is suitable to preserve the correct aggregate size of at least Cambisols, but the properties of the secondary particles may still not reflect true geometric forms and chemical properties.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Abdelrahman, Hamada
|0 0000-0002-6069-7239
|b 1
700 1 _ |a Krause, Lars
|0 P:(DE-Juel1)168258
|b 2
700 1 _ |a Amelung, Wulf
|0 P:(DE-Juel1)129427
|b 3
773 _ _ |a 10.1016/j.geoderma.2017.10.028
|g Vol. 313, p. 163 - 171
|0 PERI:(DE-600)2001729-7
|p 163 - 171
|t Geoderma
|v 313
|y 2018
|x 0016-7061
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844597/files/1-s2.0-S0016706117308455-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844597
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164361
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 0000-0002-6069-7239
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168258
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129427
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21