001     844598
005     20210129233008.0
024 7 _ |a 10.1038/s41598-018-21547-y
|2 doi
024 7 _ |a 2128/17721
|2 Handle
024 7 _ |a pmid:29453440
|2 pmid
024 7 _ |a WOS:000425284900028
|2 WOS
024 7 _ |a altmetric:34815935
|2 altmetric
037 _ _ |a FZJ-2018-02002
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Sun, Zhaoan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Allocation of photosynthesized carbon in an intensively farmed winter wheat–soil system as revealed by 14CO2 pulse labelling
260 _ _ |a London
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1521540083_25109
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Understanding the rhizodeposited carbon (C) dynamics of winter wheat (Triticum aestivum L.), is crucial for soil fertility and C sequestration. Pot-grown winter wheat was pulse labelled with 14CO2 at the key growth stages. 14C in the shoots, roots and soil was measured at 5 or 2 days after 14C-labelling (DAL 5/2) at each growth stage and at harvest. The 14C in the shoots increased from 4% of the net 14C recovered (shoots + roots + soil) during tillering to 53% at harvest. Approximately 14–34% of the net 14C recovered was incorporated into the soil. Allocation of photosynthesized C was extrapolated from the pot experiment to field condition, assuming a planting density of 1.8 million plants ha−1. The estimated C input to the soil was 1.7 t C ha−1, and 0.7 t C ha−1 of root residues was retained after wheat harvest; both values were higher than those previously reported (0.6 and 0.4 t C ha−1, respectively). Our findings highlight that C tracing during the entire crop season is necessary to quantify the temporal allocation of photosynthesized C, especially the contribution to soil carbon in intensified farming system.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Chen, Qing
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Han, Xiao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 3
700 1 _ |a Qu, Bo
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Meng, Fanqiao
|0 0000-0002-0172-7776
|b 5
|e Corresponding author
773 _ _ |a 10.1038/s41598-018-21547-y
|g Vol. 8, no. 1, p. 3160
|0 PERI:(DE-600)2615211-3
|n 1
|p 3160
|t Scientific reports
|v 8
|y 2018
|x 2045-2322
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844598/files/s41598-018-21547-y.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844598
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21