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Abstract 26 

Incubation is a classical laboratory experiment to gain information about the carbon turnover 27 

from soils under different treatments (e.g., temperatures, water content, nutrient supply), 28 

amendments (e.g. biochar, straw, compost), or from different locations (e.g. topsoil vs. 29 

subsoil). Classically, the measured data are represented as cumulated CO2 flux or as % total 30 

organic carbon (TOC) mineralized and from those data kinetic parameters are often derived 31 

using models of different complexity. Based on the conceptual idea that more than one C-pool 32 

exists, especially in soil mixtures, the simple single-pool model is more and more substituted 33 

by double-pool models to describe these data. Hereby, the model will be iteratively fitted to 34 

the data to obtain the pool sizes and rate constants of the pools (slow and fast). In the work 35 

presented, we show that the fitting of double-pool models will lead to different results in the 36 

pool sizes and kinetic parameters, depending on the fitting approach used. Secondly, general 37 

problems of over-fitting and the ill-posed problem are discussed, whereby it will be shown, 38 

that especially the estimation of the rate constant for the slow pool is highly uncertain. Based 39 

on these general findings and problems in the fitting procedure, fitting results reported in 40 

literature were analyzed. The meta-analysis indicates that only a small number of reported fits 41 

are apparently not well fitted, whereas a non-negligible percentage of reported fits were over-42 

fitted or wrong parameters were reported. Finally, the paper provides guidelines for kinetic 43 

fitting and discusses possible fitting alternatives. 44 

 45 
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Introduction 46 

The measurement of the production of CO2 from soils in incubation studies has been used for 47 

many years to gain information about the influence of various soil types, changing 48 

temperatures and water contents, as well as the addition of amendments on the soil respiration 49 

(Reiners, 1968; Tayler & Parkinson, 1988; Mukherjee et al., 2015, amongst many others). 50 

Amongst the first who used incubation data in a qualitative mathematical description was 51 

Olsen (1963) who described the carbon turnover by the use of a single-pool model. In the 52 

following years mathematical modeling of the biodegradation kinetics became more and more 53 

important to obtain data that could be related to other studies and used for generalizing 54 

important findings. Additionally, such experiments were performed to derive the rate 55 

constants or half-lives of different carbon pools, especially of the labile carbon pool, as inputs 56 

into complex predictive carbon models such as RothC (Coleman and Jenkinson, 1996, 1999), 57 

Century (Parton et al., 1994), Candy (Franko et al., 1997), Daisy (Hansen et al., 1990) or 58 

Yasso (Liski et al., 2003, 2005). As listed, several models with different complexities exist to 59 

elucidate the carbon mineralization dynamics. Among them, multi-compartment models were 60 

designed to simulate the turnover of soil organic matter ranging from several days to 10,000 61 

years, whereby the age of the recalcitrant carbon pool will be classically estimated by radio 62 

carbon dating (Trumbore, 1993). For incubation experiments the observation time, and 63 

therefore, the information content of the data, is far too limited to gain information about the 64 

recalcitrant pool with turnover times larger than several hundred years. As a consequence, 65 

mainly information about the labile and refractory pool will be derived from incubation data 66 

(e.g., Ajwa & Tabatabai, 1994; Liang et al., 2008; Qayyum et al., 2011; Saviozzi et al., 1997; 67 

Zimmerman et al., 2011). While in the early years kinetic modeling (or fitting) of incubation 68 

data was restricted to the single- or one-pool model due to the possibility of solving the 69 

problem by log-transforming the observed data and using a linear regression for the 70 

estimation of the rate constant, more recent publications chose multi-pool models (two-, 71 

three-, and even four-pool models), which are fitted iteratively using appropriate computer 72 

software. For the single-pool model the total organic carbon is assumed to decompose with a 73 

certain turnover rate, whereby for the double-pool model the total organic carbon is separated 74 

into two different compartments, i.e. into a labile pool with a short turnover time and into a 75 

non-labile or refractory pool with an accordingly longer turnover time (Qayyum et al., 2011). 76 

In some cases even pool models with more than two pools are reported and used to describe 77 

incubation experiments (e.g., Paul et al., 1999, Haddix et al., 2011; Li et al., 2013). In general, 78 

there are different fitting approaches used in literature to estimate the kinetic parameters from 79 
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incubation studies, which will yield different kinetic parameters even for the same 80 

experimental data. This means in consequence, that the kinetic parameters fitted might be 81 

inconsistent. If these parameters will be used for comparison between studies or as inputs for 82 

predictive carbon modeling, different conclusions will be drawn or different model 83 

predictions will be generated. Unfortunately, literature data often does not allow to clearly 84 

identify which of the methods has been used and in some cases only refitting of the reported 85 

data will give insight into the approach applied.  86 

A second drawback of kinetic parameter fitting is associated to the choice of the kinetic 87 

model applied (single-pool versus double-pool model). The motivation for the more frequent 88 

use of models with more than one pool can be found in the conceptual ideas developed over 89 

the last decades. The bulk soil organic carbon is not composed of one single substance, which 90 

turns over with a single specific rate, rather than a mix of different organic constituents 91 

exhibiting different qualities, and therefore, associated to different turnover rates. To account 92 

for this, the single-pool model was seen as being not state-of-the-art to describe the incubation 93 

data anymore, irrespectively of the information content included in the experimental data. In 94 

other words, it has to be questioned if the application of higher order pool models is suitable 95 

to receive a unique parameter set or if the fitting is ill-posed, which is defined as the drawback 96 

that the identified parameters are instable and/or non-unique. Non-uniqueness results from a 97 

non-convex objective function, which exhibits either multiple local minima or a global 98 

maximum that occurs for a broad range of parameter values. In that case, different 99 

combinations of parameters will provide the same model response (Šimůnek & Hopmans, 100 

2002). This problem was already introduced as equifinality by Beven in the mid 1990 (Beven, 101 

1993 and 1996) for hydrological modeling. Non-uniqueness means in consequence that 102 

different parameter combinations in the kinetic model will yield the same model response, 103 

and therefore, the estimated parameters, especially the rate constant, half-life or mean 104 

residence time, cannot be used for comparison between studies neither for initialization of 105 

complex predictive carbon models. Only little attempt was made to explore the applicability 106 

of higher order carbon pool models. For example, Scharnagl et al. (2010) analyzed the 107 

feasibility to estimate four pools of the RothC model (Coleman & Jenkinson, 1999) from 108 

incubation experiments using a Bayesian approach. Their results showed that the different 109 

pools could be adequately determined using a total incubation time of about 900 days. Li et al. 110 

(2013) used a Markov chain, Monte Carlo (MCMC) technique to estimate the kinetic 111 

parameters and to evaluate the identifiability and uncertainty of the estimated parameters. 112 

Even if they concluded that the kinetic parameters could be well estimated using the MCMC 113 
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approach, a fairly large spread in the posterior distribution of the parameters is detectable (see 114 

Fig. 2 of their publication). This large spread in the fitted parameters is also reflected by the 115 

associated uncertainties in the reported C fractions for the three pools fitted with 4.7 ± 2.6 116 

(mean ± SD), 22.4 ± 16.1 and 72.9 ± 17.6 %, respectively, and becomes even more evident in 117 

the calculated mean residence times of 0.19 ± 0.17, 2.71 ± 2.34 and 80.15 ± 61.14 years for 118 

pool 1, pool 2, and pool 3, respectively.  119 

Based on the many drawbacks and problems associated with the estimation of kinetic 120 

parameters from incubation experiments this paper will i) give an overview of the theory of 121 

kinetic modeling ii) the problem of different data expression and approaches used for kinetic 122 

fitting, iii) provide information about drawbacks, especially over-fitting and the ill-posed 123 

problem, and will iv) analyze existing data from publications on the drawbacks introduced.  124 

Background and Theory 125 

Kinetic carbon model 126 

In general, there are two different possibilities to express the experimental data from 127 

incubation experiments. The first is the expression as cumulative flux, where the single CO2 128 

measurements will be cumulated over time (see Fig. 1a). This approach will be denoted as 129 

flux in the following. The second possibility to express the experimental findings is to relate 130 

the measured CO2 fluxes to the total organic carbon (TOC) content in the microcosm and to 131 

calculate the percentage of total carbon mineralized. This approach will be denoted as % TOC 132 

mineralized in the following. Again the % carbon mineralized will be cumulated over time as 133 

shown in Fig. 1b.  134 

The general kinetic model to describe the data, irrespectively of the number of pools used and 135 

the way data are expressed (flux or % TOC mineralized), is given by: 136 

 137 
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 139 

where Ct is the mineralized total CO2 flux (or % TOC mineralized) whereby C is also denoted 140 

as M in many studies. C1 is the total size of the fast C-pool and Cn is the size of the slowest C-141 

pool. k1 to kn are the corresponding rate constants [time units such as days-1 or years-1] for the 142 

respective pools C1 to Cn. In case of the data expression as flux Ct and Cn can be either 143 

expressed in CO2 mass units [e.g., mg CO2 g-1 soil] or as a percentage of the entire measured 144 

flux [%]. In some cases Ct and Cn will be expressed in C-equivalent calculated from evolved 145 

CO2. Assuming a single-pool model reduces Eq. [1] to the first term on the right hand site and 146 
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for a double-pool model n will be 2.  147 

Different Constraints for the fitting 148 

Additional to the two different possibilities to express the experimental data (flux or % TOC 149 

mineralized) different constraints can be used for the fitting of the kinetic parameters of the 150 

kinetic model (Eq. [1]).  151 

I. Unconstrained fitting, where the fitting of the kinetic parameters from evolved CO2 152 

(or C equivalents) will be performed without constraining the total cumulative flux at 153 

tend 154 

II. Constrained fitting, where the fitting of the kinetic parameters from evolved CO2 (or C 155 

equivalents) will be constrained to match the total cumulative flux (or % TOC 156 

mineralized) at tend 157 

Here it has to be noted, that for the second possibility (constrained fitting) pool sizes can be 158 

either expressed on mass basis (e.g., mg CO2 g-1 soil) or in % from total flux, whereas for the 159 

first possibility (unconstrained fitting) only pool sizes expressed on mass basis (e.g., mg CO2 160 

g-1 soil) can be used. 161 

Putting all possibilities together, four different fitting approaches are feasible and used in 162 

literature: 163 

1. Constrained fitting on flux data using pool sizes expressed on mass basis (e.g., mg 164 

CO2 g-1 soil), where C1 to Cn sum up to total cumulative flux at tend. 165 

2. Constrained fitting on flux data using pool sizes expressed in % from total flux, where 166 

C1 to Cn sum up to 100% total cumulative flux at tend. 167 

3. Unconstrained fitting on flux data using pool sizes expressed on mass basis (e.g., mg 168 

CO2 g-1 soil), where C1 to Cn will sum up to any value. 169 

4. Constrained fitting on % TOC mineralized data using pool sizes expressed in % from 170 

total TOC mineralized, where C1 to Cn sum up to the total % TOC mineralized at tend. 171 

In approach 1, the kinetic parameters kn and pool sizes Cn will be fitted for each C-pool n, 172 

whereby the sum of all pools n match the total flux at the end of the experiment, tend. This can 173 

be also done by expressing the pool sizes C1 to Cn as a ratio (%) of total flux observed leading 174 

to approach 2. In consequence the sum of the individual C-pools in both approaches (1 and 2) 175 

is always smaller than the total C-stock of the microcosm and reflects the mineralized carbon 176 

contributing to the total flux. In other words, the fitted kinetics (not only the pool sizes Cn but 177 

also the rate constant kn) describe only the part of the soil carbon turned over (mineralized) 178 

and not the kinetics of the entire C-stock. Because only the mineralized C-pools will be 179 

analyzed, the fitted rate constants (kn) are generally higher and the mean residence times 180 
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(MRTs) and half-lives (HL) are much shorter than those determined using approach 4. On the 181 

other hand, this approach has the advantage of providing kinetic parameters, which can be 182 

used for comparison of different soils / amendments / treatments in the same study. In 183 

approach 3, the kinetic parameters kn and pool sizes Cn will be fitted for each C-pool n, 184 

whereby the sum of each estimated pool size will not match necessarily the total C-stock in 185 

the microcosm. The impact of the unconstrained fitting will be discussed in the Results 186 

section. In approach 4, the raw CO2 flux data will be related to the total C-stock in the 187 

microcosms resulting in % TOC mineralized data. In contrast to the other approaches (1 to 3), 188 

the fitted kinetic parameters reflect the turnover of the entire C-stock in the microcosm and 189 

therefore, the rate constants fitted (especially for the fast or labile C-pool) can be used to 190 

inform complex predictive carbon models such as RothC, Century, Candy, or Yasso as well 191 

as to compare treatments within the study. The impact of the different fitting approaches on 192 

the kinetic parameters obtained and the implication for their use will be further discussed in 193 

the Results section. 194 

Fitting of the kinetic model 195 

Single-pool models were used since the 1960s to describe incubation data, whereby the fitting 196 

in the 1960s and 1970s was performed using an analytical solution, which was necessary 197 

because access to computers and fitting software was limited. Therefore, the raw data were 198 

log-transformed as shown by e.g. Stanford & Smith (1972), resulting in a linear regression 199 

between observed flux (or % TOC mineralized) and time. As mentioned, the resulting 200 

regression can be solved analytically for the rate constant. In this case, the rate constant is the 201 

regression slope of the log-transformed flux (% TOC mineralized) versus time. As an 202 

example, a single-pool model was used to generate cumulative fluxes (% TOC mineralized) 203 

over time with a rate constant k of 0.025 days-1 (see Fig. 2a). In a next step, the fluxes (% TOC 204 

mineralized) were log-transformed and plotted in Fig. 1b. As can be seen, all points arrange 205 

on a straight line, on which the regression and slope can be calculated. The back-calculated k 206 

value from the slope matches exactly the k value used as input. In the second example (Fig. 1c 207 

to d), a double-pool model was used to generate the fluxes (% TOC mineralized) with k1 of 208 

0.050 and k2 of 0.002 days-1 and a pool ratio of 30 % for C1 and 70 % for C2. Again, these 209 

fluxes were log-transformed and a clear non-linearity is detectable, which reflects the 210 

underlying super-imposement of the two exponential functions. For better visualization, we 211 

also plotted two linear regressions into Fig. 1d but did not provide the regression equations 212 

due to two reasons. First, even if the kinetic parameters (k1 and k2) can be theoretically 213 

estimated by using two linear regression functions, the fitting is a crucial step. This is mainly 214 
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based on the decision where to split the data set for the individual regressions. Based on the 215 

first problem, the obtained kinetic parameters often diverge from those parameters used to 216 

generate the data. To overcome the problem of the analytical solution based fitting of the 217 

double-pool model computers and appropriate fitting software was introduced from the mid-218 

1980s. 219 

Materials and Methods 220 

Kinetic fitting, Statistical Analysis, and goodness of fit 

For all fittings in this study, we followed the same procedure as described below. 221 

 222 

The parameters providing the best prediction of the measured incubation data can be 223 

determined by minimizing the sum of squared residuals: 224 
2

1
,, )(∑

=

−=
m

i
isimiobs xxSSR                                 [2] 225 

where xobs and xsim are the observed and simulated cumulative CO2 (or C-equivalent) fluxes 226 

[e.g., mg CO2 g-1 soil] or % TOC mineralized at time step i and m is the total number of 227 

observations. For the minimization of the objective function [Eq. 2] the rate constants kn and 228 

the pool sizes Cn of Eq. [1] were systematically varied using the global optimization routine 229 

shuffled-complex-evolution University of Arizona (SCE-UA) as described by Duan et al. 230 

(1992 and 1994) until convergence was reached. The algorithm was considered to converge 231 

when the objective function changed <0.01% in 10 consecutive loops of the algorithm (1000–232 

2000 model runs). This optimization routine has been already successfully applied in a wide 233 

range of applications in hydrology (Mertens et al., 2005; Mboh et al., 2011) but also for the 234 

estimation of parameters in non-linear C models (Weihermüller et al., 2009 & 2013; Bauer et 235 

al., 2012).  236 

As a metric for the goodness of the fit the χ2-test was used as recommended by FOCUS 237 

(2006), which is based on the degree of freedom df, computed as the number of data points n 238 

minus the number of model parameters p: 239 
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χ            [3] 240 

where is the mean of all observed values and err is the measurement error percentage. In 241 

case χ2 is larger than the tabulated χ2
df,α the model is not appropriate to represent the data at 242 

the chosen level of significance α. If different models will be tested (e.g., single versus 243 

double–pool model) the model with the lowest χ2 should be selected. Here it has to be noted 244 
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that many other statistic matrices can be used to identify the goodness of the fit, which are 245 

listed in Appendix 1. 246 

Finally, the half-life (HL) and the mean residence time (MRT) can be calculated from the rate 247 

constants kn by 248 

nk
HL )2ln(

=              [4] 249 

nk
MRT 1

=              [5] 250 

Additionally to the statistical matrices a visual judgment of the goodness of the fit was (and 251 

should be) performed. Therefore, the measured data (flux or % TOC mineralized) and the 252 

calculated model curve was plotted. A second plot indicating the distribution of residuals 253 

(estimated minus measured data) over the time course was used. This residual plot is useful 254 

for revealing heterodescacity (systematic over- or under-predictions) and provides 255 

information about the bias. For an exact model fit, all residuals are zero. Systematic 256 

deviations occur if negative and positive residuals are not randomly scattered around the zero 257 

line. An example of ‘good’ and ‘bad’ fit is provided in Fig. 3 for some synthetically generated 258 

data. As can be seen, the good fit of the single-pool model (Fig. 3a) led to a random 259 

distribution of the residuals over time. On the other hand, Fig. 3b is an example where the 260 

single-pool model provides a poor fit to the data. This is obvious from visual inspection of 261 

both plots (model fit and residuals). As can be seen the fluxes near the beginning of the 262 

incubation are generally under-estimated by the model, resulting in relatively large positive 263 

deviations (ten consecutive positive residuals). Additionally, the last points are generally 264 

underestimated with relatively large negative residuals. In the case of such systematic errors 265 

the use of a single-pool model can be questioned and a double-pool model should be used 266 

instead. The help of the visual inspection is not only restricted to the application of the single-267 

pool model but was (and should be) performed also for the fit of a double-pool model. 268 

Finally, the contributions of the single fluxes from the individual pool are also plotted in 269 

combination with the total flux to give impression of the pool contribution to the overall flux 270 

(% TOC mineralized). 271 

Calculation of parameter spaces 

Parameter spaces provide visual information about the identifiability of fitting parameters. 272 

The calculation of the parameter spaces for a double-pool model (Eq. [1] with n = 2) was 273 

explored with a grid search. Therefore, the rate constants k1, k2, and pool size of the labile C-274 

pool C1 were changed stepwise to calculate the parameter response surface functions using 275 
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approach 2 (constrained fitting on flux) and 4 (constrained fitting on % TOC mineralized). 276 

The C-pool size of C2 was calculated by 1–C1 on a ratio basis (0 to 1). Each parameter was 277 

changed 200 times within given bounds resulting in a total of 40,000 parameter combinations. 278 

Based on these 40,000 model runs and the knowledge of the parameters used in each single 279 

run and the calculated SSR (Eq. [2]), as criteria for the goodness of the fit, the 3D parameter 280 

space was plotted. 281 

Setup of literature database 282 

For the analysis of published reported kinetic fits, literature was screened and all relevant data 283 

including the kinetic parameters (kn and Cn) and the way the data were fitted were compiled in 284 

a database. The gathered publications were arbitrarily selected and only a small proportion of 285 

a large number of available publications was screened. Hereby, literature from the 1960s and 286 

1980s were not selected because kinetic fitting was mainly performed using single-pool 287 

models using the analytical approach. A list of all used publications is provided in Tab. 1. In 288 

total 504 individual incubation experiments extracted from 40 publications were selected. The 289 

504 entries covered publications from the years 1988 to 2016 analysing soils from around the 290 

globe (Africa = 16, Asia = 88, Australia = 16, East Antarctica = 32, Europe = 152, North 291 

America = 193, Oceania = 4, and South America = 3) varying in soil texture (sand = 52 %, 292 

silt = 20 %, clay = 5 %, no information = 23 %), sampling depth (topsoil = 90 %, subsoil = 293 

7 %, no information = 3 %), and soil amendments. For the soil amendments biochar was the 294 

largest percentage followed by plants/plant residues (see Tab. 2). The large number of entries 295 

using biochar as an amendment might be explained by the fact that biochar was studied 296 

intensively within the last years. Nevertheless, in 45 % of all entries non-amended soils were 297 

also reported, which are classically reference soils. The incubation times also vary widely 298 

from 0.5 to 800 days, whereby incubation temperatures from 5 to 40°C are reported. Overall, 299 

548 kinetic fits are presented, which is larger than the total number of individual incubation 300 

studies, but can be explained by the fact that some incubation results were fitted by different 301 

models. From the fitted models the double-pool model was used in 64 % and the single-pool 302 

model in only 36 % of all cases to describe the observed data. 303 

Data digitalization 304 

Because in all publications raw data of the incubation experiment (time vs flux or time vs % 305 

TOC mineralized) are not reported in tabular form the presented scatterplots were digitized 306 

for further analysis. Therefore, screenshots of the diagrams were imported to the digitalization 307 

program plot digitizer 2.6.8 (Huwaldt & Steinhorst, 2015). First, the origin of the axes as well 308 
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as the highest x and y-values were defined and the diagram plane was spanned. After, all 309 

point values were picked and an output table with the x – y pairs (time vs flux or time vs % 310 

TOC mineralized) was generated and stored. 311 

Results 312 

Effect of different data expressions and fitting constraints on kinetic parameters 313 

As mentioned in the Background and Theory section different data expressions (flux vs % 314 

TOC mineralized) and data constraints (constrained and unconstrained) are reported in 315 

literature leading to 4 different fitting approaches, which are possible to fit a kinetic model to 316 

the same experimental incubation data.  317 

To analyze the effect of the 4 different approaches on the kinetic parameters obtained by 318 

fitting a double-pool model (Eq. [1] with n = 2) data published by Muhkerjee et al. (2015) 319 

were fitted using the 4 approaches. The data used were measured from a sandy soil amended 320 

with 5 % digestate and 1 % high temperature biochar incubated at ~ 20°C for 90 days. Based 321 

on the addition of digestate and biochar conceptually more than one C-pool should exist, and 322 

therefore, a double-pool model should be appropriate to reproduce the experimental findings. 323 

For the constrained fitting on flux data (approach 1) the sum of the two pools C1 and C2 324 

matched the total cumulative flux at tend of 0.0074766 mg C g mixture-1. The model results of 325 

the fitting of the 4 different approaches are plotted in Fig. 4a and 4b. As can be seen, all 326 

approaches fitted the data well using the double-pool model. On the other hand, looking at the 327 

kinetic parameters fitted (Tab. 3) we can see clear differences between the fitting approaches. 328 

For the flux data the first two fitting approaches (1 and 2) yielded the same fit curves for the 329 

total flux as well as same kinetic parameters, which could be expected, because C1 and C2 can 330 

be expressed in two ways (% flux or mass at tend), while containing the same information 331 

content. Therefore, kinetic parameters obtained by both approaches can be directly compared 332 

with each other within or between studies. On the other hand, for the fit where C1 and C2 are 333 

fitted without a constraint (approach 3), the model fit looks slightly different, especially close 334 

to the last measured data point. As a consequence, the kinetic parameters differ also from 335 

those obtained by approach 1 and 2, whereby both rate constants (k1 and k2) are larger 336 

resulting in smaller half-lives of 9.1 and 251 days compared to 11.2 and 871 days fitted by 337 

approach 1 and 2. Additionally, the C-pool sizes also differ from approach 1 and 2 and the 338 

sum of both pools is 0.1159 mg C g mixture-1, which is 2,432% of the observed flux. This 339 

problem of overestimation can be also observed in literature, where Zimmerman et al. (2011) 340 

for example used such unconstrained fitting (fit on SF33 – in supplementary data associated 341 
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with the article) and the sum of the two pools estimated by an unconstrained double-pool fit 342 

was about 280 % of the total observed flux from the system. Because of the potential problem 343 

in overestimating the pool sizes by this approach, the unconstrained fit should be avoided. 344 

Finally, the data transformed to % TOC mineralized was also fitted and the kinetic parameters 345 

show again different values as those obtained from the other approaches. Hereby, the fast pool 346 

showed faster turnover of 9.2 days and the slow of 1575 days, which means for the slow pool 347 

a 181 % longer turnover. Additionally, the C-pool sizes differ from those fitted by approach 1 348 

and 2, whereby the faster pool in approach 4 is now the smaller pool (18.8 % of the C-stock) 349 

compared to approach 1 and 2, where the fast C-pool makes up 97.3 % of the respiration. The 350 

general behavior of differences of the kinetic parameters from different fitting approaches has 351 

been already observed by Mtambanengwe & Kirchmann (1995) but not further discussed.  352 

The reasons for the reported differences are quite clear. For the fitting on flux data the kinetic 353 

parameters are only representative for the C-stock contributing to the flux, whereas for the % 354 

TOC mineralized approach the turnover refers to the entire carbon stock in the soil. In 355 

consequence of these differences in the obtained kinetic parameters the extracted information 356 

should be interpreted carefully. First, within one study the fitting approaches 1, 2, and 4 are 357 

feasible and provide useful information to interpret differences between treatments or 358 

sampling locations. Unfortunately, approach 1 and 2 are not useful to inform complex 359 

predictive carbon models such as RothC, Candy, Century, or Yasso because the fitted rate 360 

constants (kn) will always refer only to the carbon turned over and not to the total C-stock, and 361 

are therefore far too large (or half-lives will be too short). In any case, the exact way how the 362 

data were fitted should be described to allow comparison between studies. On the other hand, 363 

comparison between kinetic parameters from one study to other reported studies is not 364 

straight forward if the procedure of kinetic parameter estimation is not reported. Finally, it has 365 

to be noted that the problem described is not inherent to the fitting of double-pool models 366 

only but will also occur if a single-pool model will be used. 367 

Over-fitting 368 

Another problem which might occur during fitting of the kinetic model to the incubation data 369 

is over-fitting, which is defined as the instance that a simpler model with less parameters can 370 

describe the measured data equally well as a more complex model containing more fitting 371 

parameters. As an example of over-fitting, we selected the digitized data of Qayyum et al. 372 

(2012) for the Oxisol amended with high temperature biochar (HTB) and fitted a single- and 373 

double-pool model to the reconstructed measurements using the constrained fitting on flux 374 

data (approach 1). The results are plotted in Fig. 5 and indicate that both models can equally 375 
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well describe the measured data. Looking at the statistical matrices the SSR (Eq. [2]) and χ2 376 

(Eq. [3]) values are 328567 and 5.2 for the single-pool fit and 32857 and 5.6 for the double 377 

pool model. The same calculated SSR for both fits indicat the same goodness of the two 378 

models but the larger χ2 for the double-pool fit nicely shows that this model is less suitable 379 

compared to the single-pool model. If we look closer to the fitted kinetic parameters, we will 380 

see that the fitted rate constants k1 and k2 for the double-pool model are 0.00794 (HL = 87.3) 381 

and 0.00791 (HL = 87.6) days, respectively. Here, it becomes obvious that the two different 382 

pools C1 (= 3698 mg kg-1) and C2 (= 2522 mg kg-1) turn over with nearly the same speed and 383 

can therefore not be disentangled from each other. In consequence, these data should be fitted 384 

using a single-pool model only, where the rate constant was estimated to be 0.00792 (HL = 385 

87.5) days. 386 

Ill-posed fitting 387 

A second general problem of fitting a double-pool model to incubation data is associated to 388 

the ill-posed problem or non-uniqueness, which will result in unreliable kinetic parameters. 389 

To get an impression of the ill-posed problem we calculated the parameter space for the data 390 

reported by Mukherjee et al. (2015). In general, the data should contain conceptually at least 391 

two pools because the soil respiration was measured from a mixture of a sandy soil with 5 % 392 

digestate and 1 % biochar. The bounds for the parameter space were set to 0.01 ≥ k1 ≤ 0.15, 393 

0.0001 ≥ k2 ≤ 0.001 and 0.01 ≥ C1 ≤ 0.3 for approach 1 and to 0.01 ≥ k1 ≤ 0.15, 5x10-394 
6≥ k2 ≤ 1x10-4 and 0.001 ≥ C1 ≤ 0.015 for approach 2, respectively. For each parameter 395 

combination the modeled data were compared to the measured ones and the mismatch 396 

between the two was expressed in SSR (Eq. [2]). The corresponding parameter spaces or 397 

response functions are given in Fig.6a and b for the fitting using the constrained fitting on 398 

flux (approach 2) and constrained fitting on % TOC mineralized (approach 4). Additionally, 399 

the best fit is indicated by a yellow star within the parameter space. As can be seen, low SSR 400 

values are calculated for a wide range of parameter combinations for both data sets, indicating 401 

that the topography is fairly flat in the vicinity of the best fit. This means that all those 402 

combination in the wide flat area provide nearly the same result in terms of SSR and that all 403 

those parameter combinations explain the measured data equally good. To get an impression 404 

how well the different parameter combination fit the data, all those combinations showing a 405 

difference less than 10 % of the SSR of the optimal fit were selected from the entire data set 406 

and the minimum and maximum C1, k1 and k2 combinations were selected. For approach 2 407 

(constrained on % flux) the estimated size of the slow pool C1 resulted in a maximum and 408 

minimum of 0.69 and 0.66 %, respectively. The rate constant of the slow pool (k1) also did 409 
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not vary much between the minimum and maximum with 0.0663 and 0.0691 days resulting in 410 

half-lives of 10.0 and 10.5 days, respectively. On the other hand, the slow pool estimates 411 

varied between 1.07x10-5 and 5x10-6 days resulting in half-lives (HL) from 64,880 to 138,625 412 

days or 177 and 380 years. 413 

For the fit on % TOC mineralized (approach 4) the size of the slow pool C1 varies between 414 

16.7 and 18.8 % (13 % difference). For the rate constant and the corresponding half-lives of 415 

the slow pool also only small absolute differences (HL = 7.63 and 9.24 days) were observed. 416 

Again, large differences are detectable for the slow pool with HL of 837 and 1.575 days. 417 

Irrespectively of these differences in the kinetic parameters for both fitting approaches the fits 418 

match quite well the observed data as shown in Fig. 7. This indicates again that the fitting is 419 

ill-posed and that multiple solutions will equally well describe the measured data. From the 420 

results presented, it becomes clear that the estimation of the rate constant of the slow pool (k2) 421 

is highly uncertain indicating that the incubation experimental data do not contain enough 422 

information for the estimation of this parameter. Especially, if the incubation time is short and 423 

if the log-transformed data are close to linear, the estimation of the slow pool rate constant 424 

(k2) is critical as already stated by Scharnagl et al. (2010). Based on the results described 425 

above, Scharnagl et al. (2010) and Li et al. (2013) proposed to use Bayesian calibration 426 

approaches to analyze the real uncertainty and the identifiability of the parameter estimation 427 

(fitting). Unfortunately, Bayesian calibration is not as straight forward as classical fitting, 428 

which is implemented in most established software packages. 429 

Unrealistic rate constants or half-lives 430 

Based on the two problems described above (over-fitting and ill-posed problem), unrealistic 431 

rate constants or half-lives can be estimated. To give an example of unrealistic fitted rate 432 

constants we used the kinetic parameters reported by Quayyum et al. (2012) for the control 433 

Alfisol subsoil (their original Fig. 2) with k1 of 3.405 and k2 of 0.000926 days. In a first step, 434 

we plotted the reconstructed double-pool model fit in Fig. 8. In addition, the contributions to 435 

the flux from the fast and slow pool were calculated based on the corresponding rate constants 436 

(kn) and pool sizes (Cn). As can be seen, the slow pool flux contributes linear to the bulk flux 437 

over the entire duration of the incubation experiment, whereas the fast pool only contributes 438 

to the bulk flux within the first day of the experiment as a consequence of the large rate 439 

constant k1 with a resulting half-life of 4.8 hrs. This means, that the fast carbon degraded 440 

almost instantaneously, which is biologically not explainable, especially because there has 441 

been no fresh and easily degradable carbon source added to the subsoil. It has to be further 442 

noted, that in this study, evolved CO2 was trapped in KOH(aq) and first sampling integrated 443 
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over the first five days. Therefore, it can be questioned if the five days integration of the flux 444 

allows to draw back information about any kinetics shorter as the first sampling. 445 

Exploring the database for fitting problems 446 

In a first step, all database entries were analyzed on the fitting approach used. Unfortunately, 447 

only 265 entries out of the 351 reported a double-pool fit could be analyzed because in some 448 

cases the entries could not be straight forward reanalyzed due to missing information how the 449 

fitting was performed or differences between the equation shown and the plotted data. Out of 450 

the total 266 entries the minority (n = 40 or 15 %) was analyzed on converted data to % TOC 451 

mineralized (approach 4) published in only three publications (Davenport et al., 1988; Collins 452 

et al., 2000; Mukherjee et al., 2015). Even if this approach can be used to inform complex 453 

predictive carbon models such as RothC, Candy, Century, or Yasso, none of these studies aim 454 

to inform such models and the kinetic parameters were only used by Davenport et al. (1988) 455 

and Collins et al. (2000) for inter-comparison between studies. For the remaining studies the 456 

total evolved cumulative flux at the end of the experiment (tend) was compared to the sum of 457 

the estimated C-pools (C1 + C2). In case that the flux at tend is much smaller as C1 + C2 it can 458 

be assumed that the unconstrained fitting on flux data (approach 3) was used. Unfortunately, 459 

the majority of the entries fall into this approach with 130 entries (49%) from a total of 12 460 

papers (Ajwa & Tabatabi, 1994; Fernández et al., 1999; Devêvre & Horwáth, 2000; 461 

Fernández et al., 2001; Pendall & King, 2007; Xuejun et al., 2008; Juarez et al., 2013; Guo et 462 

al., 2014; Zhao et al., 2015), whereby, as discussed, this approach will lead to unrealistic C-463 

pool sizes and rate constants. Additionally, seven out of the 12 papers related the estimated 464 

parameters to parameters reported by other studies. In comparison, approach 2 (constrained 465 

fitting on flux data using pool sizes expressed in % from total flux) was used 35 times (13%) 466 

in four papers (Paul et al., 1999; Cheng et al., 2008; Gillis & Price, 2011; Ci et al., 2015) and 467 

approach 1 (constrained fitting on flux data) was used 60 time (23 %) reported in three 468 

publications (Bernal et al., 1998; Haddix et al., 2011; Calvelo Pereira et al., 2014). In 469 

conclusion nearly half of the entries seem to use a fitting approach (approach 3), which is not 470 

recommended to estimate reliable rate constants and especially C-pool sizes. 471 

In a next step, the data base was analyzed according to the flowchart depicted in Fig. 9. First, 472 

obviously wrong reported kinetic parameters were identified and classified into Class A. 473 

These are parameters of a double-pool model, whereby one estimated kn or Cn equal zero, 474 

which means that either one C-pool does not turn-over (kn = 0) or that the pool turns over but 475 

has no C-pool size (Cn = 0). In both cases no flux will be formed from the corresponding pool, 476 

which will consequently result in a single pool model, and therefore, no double pool model 477 
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should have been fitted to the data. From all double-pool model data entries (n = 336) four 478 

were in Class A, which corresponds to 1.2 % of the data entries. These four fits originated 479 

from two different publications (Cayuela et al., 2010; Zimmermann et al., 2011) and three of 480 

them are from soils without amendment.  481 

For the identification of those entries which fall into Class B, defined as those with 482 

conspicuous large rate constants or small half-lives, all rate constants of the fast C-pool (k1) 483 

were plotted in Fig. 10 (n = 336). As can be seen in the histogram, there are two distinct peaks 484 

in the reported half-lives for the fast pool – one at half-lives of 20 to 30 days and another for 485 

very short half-lives <5 days, but also long half-lives e.g. of up to 347 days are reported in 486 

Cheng et al. (2011). The peak at 20 to 30 days nicely coincidence with the half-lives for the 487 

fast C-pool defined in complex predictive carbon models (e.g., RothC = 25.3 days, Century = 488 

20-50 days, and Yasso ~ 42 days). Half-lives between 20 and 40 days are reported in eight 489 

papers, whereby only four analyzed the data according to approach 4 (% TOC mineralized) 490 

(Davenport et al., 1988; Collins et al., 2000; Fang et al., 2014; Mukherjee et al., 2015), which 491 

should be the choice to get reliable estimates of the half-lives to inform complex predictive 492 

carbon models. On the other hand, the extreme short half-lives (minimum reported = 0.18 493 

days by Mukherjee et al. (2015)) seem to be rather unrealistic. If a threshold below the 494 

shortest half-lives used in complex predictive carbon models (20 days) will be set, 281 entries 495 

(85%) will fall into this class. Because carbon turnover can be much quicker in incubation 496 

studies as compared to natural environmental conditions, faster turnover might be also 497 

observed. Nevertheless, setting a threshold at very short half-lives of 1 day will still yield 43 498 

entries (13 %) reported in nine papers (Bernal et al., 1998; Fernández et al., 2006; Pendall & 499 

King, 2007; Juarez et al., 2012; Quayyum et al., 2012; Guo et l., 2014; Saviozzi et al., 2014; 500 

Mukherjee et al., 2015; Zhao et al., 2015), whereby this extremely short half-live seem rather 501 

unrealistic, and therefore, these entries were classified into Class B. The reasons for the fitting 502 

of such short half-lives can be ascribed to the problem of over-fitting or the ill-posed problem.  503 

To get information about entries falling into the third class (Class C) a single- and a double-504 

pool model were refitted to all digitized data and the χ2value was calculated for both fits. The 505 

fitting was performed using approach 1 if flux data were reported or according to approach 4 506 

if % TOC mineralized was reported. Additionally, Class C was subdivided into Class C-1 if a 507 

good kinetic fit was reported and if the reported kinetic parameters can be used to match the 508 

reconstructed observations. Class C-2 was defined in a ways that the reported kinetic 509 

parameters cannot be used to match the reconstructed observations but a good double-pool 510 

model fit can be generally obtained. In the last class (Class C-3) refitted entries were allocated 511 

https://dict.leo.org/englisch-deutsch/coincidence
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if the data were equally good fitted by a single-pool model, which was judged by a smaller χ2 512 

value for the single-pool model compared to the double-pool model (over-fitted). 513 

Unfortunately, for 92 entries the fitting approach could not be clearly identified, and 514 

therefore, these entries were not used further. Therefore, in total only 173 of the entries of the 515 

entire database could be used for this analysis. In total, the majority of the entries (123 or 70 516 

%) were classified into Class C-1, which shows that only less than a third of the analyzed 517 

entries (29 %) are over-fitted or that the reported parameters are not the best parameters to 518 

describe the experimental data. From this entries 19 (11 %) fall into Class C-2, where the 519 

kinetic parameters observed do not match the reconstructed measured data but a double-pool 520 

can be in general successfully fitted to the observed data. This finding is somehow in 521 

contradiction to the statement given in literature where only 5.6 % of all fits where judged to 522 

be no good fits (e.g., indicated by low R2 values) (e.g., in Côté et al., 2000; Guo et al., 2014; 523 

Zimmermann et al., 2011), which indicates that most authors assumed that their fits represent 524 

the data well and that the estimated kinetic parameters are reliable. On the other hand, Class 525 

C3 includes all over-fitted entries, where a single-pool model should have been fitted to the 526 

experimental data. This class covers 32 entries or 18 % from eight individual papers 527 

(Davenport et al., 1988; Bernal et al., 1998; Fernández et al., 1999, 2006; Devêvre & 528 

Horwáth, 2000; Zimmermann et al., 2011; Juarez et al., 2013; Mukherjee et al., 2015). This 529 

clearly indicates that the problem of over-fitting is not well recognized by some scientists 530 

even if this problem can be easily overcome by using appropriate statistics and fitting 531 

sequentially simple to more complex models to the data. 532 

Discussion and Conclusion 533 

The estimation of kinetic parameters is not straight forward and as shown, different fitting 534 

approaches will lead to differences in the estimated kinetic parameters, over-fitting has to be 535 

avoided, and the ill-posed problem has to be tackled. Therefore, alternatives to the fitting 536 

where the kinetic parameters are not essentially needed are required. One widely used 537 

possibility is to use the cumulated fluxes at tend to compare different treatments or locations 538 

within one study. This approach is already widely applied and used by e.g. Marschner & 539 

Noble (2000), Bruun et al. (2011) amongst many others, but does not allow comparison 540 

between studies nor the parameterization of complex predictive carbon models.  541 

If kinetic fitting will be performed, the authors should first define the aim of the study. If only 542 

different treatments within one study will be compared, or if they aim for inter-study 543 

comparison the fitting approach 1, 2, or 4 should be selected. In any case, care should be 544 

taken to compare own results only with those reported results using the same fitting approach. 545 
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In any case the unconstrained fitting (approach 3) should be avoided. Our analysis also 546 

showed that inter-comparison of estimated parameters between different incubation studies 547 

has only been used in half of the studies and the potential of parameter inter-comparison has 548 

therefore not yet been fully explored. Again, to provide a meaningful analysis of differences 549 

such inter-comparisons require a detailed description of the applied approaches. If the aim of 550 

the study would be the information of complex predictive carbon models (e.g., RothC, 551 

Century, Candy, Yasso) only the fitting approach 4 should be selected to generate the rate 552 

constants or half-lives. Unfortunately, even this approach has a drawback because the 553 

experimentally determined (often small) CO2 flux has to be related to a highly uncertain and 554 

often magnitude larger TOC stock. 555 

During the fitting exercise, irrespectively which approach selected, the methodology provided 556 

in the Materials and Methods section should be followed in any case, which included the 557 

application of an appropriate statistical metric for the judgment of over-fitting, plotting the 558 

model fit along with the measured data, analyzing the residues and a careful check of the 559 

individual C-pool contributions. Especially the plotting of the model results along with the 560 

measured data will allow the reader to judge the goodness of the fit. Unfortunately, in some 561 

cases spline curves were included instead in the plots of measured data (e.g., Ajwa & 562 

Tabatabai, 1994 (their Fig. 1-3), Mtambanengwe & Kirchmann, 1995 (their Fig. 1), Qayyum 563 

et al., 2011 (their Fig. 2), Ouyang et al., 2008 (their Fig. 1), Zimmermann et al., 2011 (their 564 

Fig 1), Calvelo Pereira et al., 2014 (their Fig. 5), Devêvre & Horwáth. 2000 (their Fig. 1), 565 

Pendall & King, 2007 (their Fig. 1 and 2), Tian et al., 2011 (their Fig. 1), Guo et al., 2014 566 

(their Fig. 2), Ci et al., 2015 (their Fig. 1)) which might lead to misinterpretation of the 567 

goodness of the fit. 568 

All these recommendations will not overcome the ill-posed problem, which is inherent to the 569 

experimental data and the nature of the simple additive carbon decay (double-pool) model 570 

given in Eq. [1]. As an alternative to the double-pool model a single-pool model can be fitted 571 

to the data (model choice depends on goodness of fit) and the corresponding half-lives (HL) 572 

or mean residence times (MRT) can be calculated for the bulk flux (or % TOC mineralized). If 573 

the single-pool model cannot describe the data sufficiently good a double-pool model can be 574 

also fitted but instead of providing the pool sizes and rate constants for both pools a bulk half-575 

life can be estimated numerically. From the knowledge of the bulk HL or MRT in the 576 

treatments with respect to a control, the changes in bulk HL or MRT can be easily calculated 577 

and attributed to the treatment. The change in bulk HL or MRT between treatment and 578 

reference (especially if additional C sources will be added such as biochar or compost) will 579 
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provide also direct information about the turnover of the amendment. 580 

Finally, it can be questioned if the simple additive carbon model (Eq. [1]) is the right choice 581 

to get insight into the complex carbon turnover in soils. In general, in this model the two 582 

carbon pools are not interlinked with each other compared to more complex models such as 583 

RothC, Candy, Century, or Yasso, which might lead to ill-posed problem. Unfortunately, only 584 

little attempt has been made to fit complex models to incubation data. Motavalli et al. (1994) 585 

for example used the Century model to estimate the carbon pool sizes and rate constants from 586 

long-term (341 days) incubation data and found distinct differences between the rate constants 587 

fitted using the classical additive model (Eq. [4]) and Century. This general problem was 588 

already observed by Berg and Ågren (1984) who stated, that "the subdivision of the 589 

decomposing substrate into chemical constituents can be done in a number of different ways, 590 

none of which can be pointed out as the best, but which give rise to very different kinetics." 591 

Motavalli et al. (1994) also showed that the regression between the Century and classical 592 

derived pool sizes was weak for a wide range of tropical soils. Scharnagl et al. (2010) fitted 593 

the RothC model to synthetically generated incubation data and found that the pools can be 594 

disentangles at long incubation times (900 days) but still the uncertainty remained quite large. 595 

Irrespectively of the advantages of this approach strong model assumptions have to be made 596 

controlling carbon flow between the pools and CO2 release from the soil as stated by 597 

Motavalli et al. (1994).  598 

As it is known that conceptual pools such as those defined in the additive model (Eq. [1]) or 599 

those integrated into most complex predictive carbon models do not exist in nature, model 600 

alternatives avoiding such pool concepts might be favorable. Amongst the first introducing a 601 

carbon turnover model without conceptual carbon pools were Ågren & Bosatta (1987) with 602 

their carbon quality model (Q-model). In this model the bulk organic carbon will not be 603 

separated into conceptual pools with assigned rate constants and the respiration flux will be 604 

described by one pool (total soil carbon) decaying with a continuous distribution of turnover 605 

rates describing different carbon qualities within the bulk C-stock. A comparable model 606 

concept has been also introduced by Forney & Rothman (2012 & 2014). Even if the Q-model 607 

has been tested successfully and has been used to describe incubation data, its general 608 

application is still limited, mainly due to its mathematical complexity.  609 

Finally, we have to question if the classical incubation experiments are still state-of-the-art if 610 

we want to gain knowledge about the carbon pools and the rate constants, because the use of 611 

natural isotopic signatures of the soils and amendments (e.g., Torn et al., 2013) or the isotopic 612 
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labeling of the amendment (e.g., Séquaris et al., 2010) can nowadays easily be performed. 613 

This labeling and signatures can be used to disentangle the C-pools from each other or to 614 

study the turnover of an individual pool. Additionally, the increase of the duration of the 615 

incubation experiment might also increase the information content of the data, especially for 616 

the estimation of the slow pool, as shown for a multi-pool model by Scharnagl et al. (2010).617 
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Figure Captions 851 

 852 

Figure 1:  Examples of the two different ways to express incubation data. A) expression as 853 
cumulative CO2 or CO2-C equivalent flux and b) as % TOC mineralized. 854 

Figure 2:  Synthetically generated incubation flux (or % TOC mineralized) data for a single-855 

pool (a) and double-pool (c) and corresponding log-transformation for the single-856 

pool (b) and double-pool (d) model. Lines in the log transformation indicate linear 857 

regressions, whereby for (d) brake point was arbitrarily chosen. 858 

Figure 3: Examples of residue distribution a) for a ‘good’ single-pool fit and b) a ‘bad’ 859 
single-pool fit. 860 

Figure 4: Fitted model results of the 4 different approaches (1 = Constrained fitting on flux 861 
data using pool sizes expressed on mass basis, 2 = Constrained fitting on flux data 862 
using pool sizes expressed in % from total flux, 3 = Unconstrained fitting on flux 863 
data using pool sizes expressed on mass basis, and 4 = Constrained fitting on % 864 
TOC mineralized data using pool sizes expressed in % from total TOC 865 
mineralized). Kinetic parameters are listed in Tab. 3. 866 

Figure 5: Example of over-fitted incubation data. Measured data digitized and reconstructed 867 
from Qayyum et al. (2012) (Oxisol + HTC) and fitted single- and double-pool 868 
model. 869 

Figure 6: Parameter spaces (response function) for a double pool model Eq. [1] for two 870 
different fitting approaches. a) Constrained fitting on flux data using pool sizes 871 
expressed in % from total flux (approach 2) and b) constrained fitting on % TOC 872 
mineralized data using pool sizes expressed in % from total TOC mineralized 873 
(approach 4). Yellow star indicates the best parameter combination listed in Tab. 3 874 
and dots indicate selected parameter combinations used in Fig. 7. Measured 875 
incubation data taken from Muhkerjee et al. (2015). 876 

Figure 7: Measured a) CO2 flux and b) % TOC mineralized with best fit and fits based on 877 
selected parameter combinations with less than 10% difference from SSR of best 878 
fit. Measured data taken from Muhkerjee et al. (2015). 879 

Figure 8: Normalized bulk CO2 flux and corresponding contributions from the slow and fast 880 
pool over time. Fluxes were reconstructed from kinetic parameters reported by 881 
Qayyum et al. (2012) for the control Alfisol subsoil (original Fig. 2). 882 

Figure 9: Flowchart for the data base analysis. 883 
Figure 10: Histogram of half-lives [days] of the fast C-pool extracted from the literature data     884 

base. Grey bar indicate span of half-lives used in complex predictive carbon 885 
models. 886 

887 
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Table Captions 888 

 889 

Table 1: Overview of the used publications in the database. 890 

 891 

Table 2: Overview of the reported amendments in the database. 892 

 893 

Table 3: Table 3: Kinetic parameters of the 4 different fitting approaches (1 = Constrained 894 

fitting on flux data using pool sizes expressed on mass basis, 2 = Constrained fitting 895 

on flux data using pool sizes expressed in % from total flux, 3 = Unconstrained 896 

fitting on flux data using pool sizes expressed on mass basis, and 4 = Constrained 897 

fitting on % TOC mineralized data using pool sizes expressed in % from total TOC 898 

mineralized). Fitted model results are plotted in Fig. 4. SSR = sum of squared 899 

residuals, HL = half-life, and MRT = mean residence time. 900 

901 
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Tables 902 

 903 
 904 

Table 1: Overview of the used publications in the database. 905 
 906 

 907 
 908 
 909 

Author Journal Year
Ajwa & Tabatabai 1994 Biology and Fertility of soils 1994

Barrett et al. 2006 Soil Biology and Biochemistry 2006
Bernal et al. 1998 Agriculture, Ecosystems & Environment 1998

Bustamante et al. 2007 Bioresource Technology 2007
Calvelo Pereira et al. 2014 European Journal of Soil Science 2014

Cayuela et al. 2010 Global Change Biology Bioenery 2010
Cheng et al. 2008 Journal of Geophysical Research 2008

Ci et al. 2015 Pedosphere 2015
Collins et al. 2000 Soil Science Society of America Journal 2000
Cook & Allan 1992 Soil Biology and Biochemistry 1992

Côté et al. 2000 Soil Biology and Biochemistry 2000
Davenport et al. 1988 Soil Biology and Biochemistry 1988

Devêvre & Horwáth 2000 Soil Biology and Biochemistry 2000
Fang et al. 2014 European Journal of Soil Science 2014

Fernández et al. 1999 Soil Biology and Biochemistry 1999
Fernández et al. 2007 Geoderma 2007

Gillis & Price 2011 Geoderma 2011
Guo et al. 2014 Acta Ecologica Sinica 2014

Haddix et al. 2011 Soil Science Society American Journal 2011
Hopkins et al. 2006 Soil Biology and Biochemistry 2006

Jha et al. 2012 National Acaddemic Science Letters 2012
Jia et al. 2015 Acta Ecologica Sinica 2015

Juarez et al. 2013 European Journal of Soil Biology 2013
Marchetti et al. 2015 Industrial Crops and Products 2015
Marinari et al. 2010 Soil & Tillage Research 2010
Mohanty et al. 2013 European Journal of Soil Biology 2013

Moreno-Cornejo et al. 2014 Geoderma 2014
Mtambanengwe & Kirchmann 1995 Soil Biology and Biochemistry 1995

Mukherjee et al. 2015 Biology and Fertility of soils 2015
Paul et al. 1999 Applied Soil Ecology 1999

Pedra et al. 2007 Soil Biology and Biochemistry 2007
Pendall & King 2007 Soil Biology and Biochemistry 2007
Qayyum et al. 2012 Journal of Environmental Quality 2012

Redin et al. 2014 Soil Biology and Biochemistry 2014
Saviozzi et al. 2014 Applied Soil Ecology 2014

Tian et al. 2011 Scientia Horticilturae 2011
Xuejen et al.2008 Journal of Environmental Sciences 2008
Zhao et al. 2015 Catena 2015

Zimmermann et al. 2011 Soil Biology and Biochemistry 2011
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Table 2: Overview of the reported amendments in the database. 910 
 911 

 912 
 913 
 914 
Table 3: Table 3: Kinetic parameters of the 4 different fitting approaches (1 = Constrained 915 

fitting on flux data using pool sizes expressed on mass basis, 2 = Constrained fitting 916 

on flux data using pool sizes expressed in % from total flux, 3 = Unconstrained 917 

fitting on flux data using pool sizes expressed on mass basis, and 4 = Constrained 918 

fitting on % TOC mineralized data using pool sizes expressed in % from total TOC 919 

mineralized). Fitted model results are plotted in Fig. 4. SSR = sum of squared 920 

residuals, HL = half-life, and MRT = mean residence time. 921 
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 925 
Figure 1:  Examples of the two different ways to express incubation data. A) expression as 926 

cumulative CO2 or CO2-C equivalent flux and b) as % TOC mineralized. 927 
 928 

 929 
Figure 2:  Synthetically generated incubation flux (or % TOC mineralized) data for a single-930 

pool (a) and double-pool (c) and corresponding log-transformation for the single-931 

pool (b) and double-pool (d) model. Lines in the log transformation indicate linear 932 

regressions, whereby for (d) brake point was arbitrarily chosen. 933 
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 935 
Figure 3: Examples of residue distribution a) for a ‘good’ single-pool fit and b) a ‘bad’ 936 

single-pool fit. 937 

 938 

Figure 4: Fitted model results of the 4 different approaches (1 = Constrained fitting on flux 939 
data using pool sizes expressed on mass basis, 2 = Constrained fitting on flux data 940 
using pool sizes expressed in % from total flux, 3 = Unconstrained fitting on flux 941 
data using pool sizes expressed on mass basis, and 4 = Constrained fitting on % 942 
TOC mineralized data using pool sizes expressed in % from total TOC 943 
mineralized). Kinetic parameters are listed in Tab. 3. 944 
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Figure 5: Example of over-fitted incubation data. Measured data digitized and reconstructed 951 
from Qayyum et al. (2012) (Oxisol + HTC) and fitted single- and double-pool 952 
model. 953 
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Figure 6: Parameter spaces (response function) for a double pool model Eq. [1] for two different fitting approaches. a) Constrained fitting on flux 955 
data using pool sizes expressed in % from total flux (approach 2) and b) constrained fitting on % TOC mineralized data using pool sizes 
expressed in % from total TOC mineralized (approach 4). Yellow star indicates the best parameter combination listed in Tab. 3 and dots 
indicate selected parameter combinations used in Fig. 7. Measured incubation data taken from Muhkerjee et al. (2015).
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Figure 7: Measured a) CO2 flux and b) % TOC mineralized with best fit and fits based on 959 
selected parameter combinations with less than 10% difference from SSR of best 960 
fit. Measured data taken from Muhkerjee et al. (2015). 961 
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Figure 8: Normalized bulk CO2 flux and corresponding contributions from the slow and fast 969 
pool over time. Fluxes were reconstructed from kinetic parameters reported by 970 
Qayyum et al. (2012) for the control Alfisol subsoil (original Fig. 2).  971 
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Figure 9: Flowchart for the data base analysis. 973 

 



 40 

Figure 10: Histogram of half-lives [days] of the fast C-pool extracted from the literature data     
base. Grey bar indicate span of half-lives used in complex predictive carbon 975 
models. 
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Appendix 1 
 
Additional statistical measures for the goodness of fits 980 

The first step during the fitting process should always be the model identification (single-pool 

model versus double-pool model). Typically the R2 is being used for the judgement for the 

goodness of fit. Unfortunately, the R2 value is not an adequate metric for the evaluation for 

the fitting of non-linear functions (Spiess & Neumeyer, 2010). Against a theoretical 

background R2 is not valid for non-linear problems. Using the R2 in linear regression relates 985 

the sum of squares of the regression to the total sum of squares based on the assumption that 

the total sum of squares equals the sum of squares of regression plus the sum of squared 

residuals. However, for non-linear regressions this is simply not given. The coefficient of 

model efficiency ME (Nash & Sutcliffe, 1970) is mathematically identical to the coefficient 

of determination, relating the sum of squared residuals to the total sum of squares: 990 
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In contrast to R2 the ME is defined for values ranging between –∞ and 1, and for ME < 0 the 

observed mean would be a better predictor than the fitted model. However, the R2 can be used 995 

for log-linear transformed single pool approaches. 

 

Alternatively, an information theory criterion could be applied, like the corrected Akaike 

information criterion (AICc) (Hurwich & Tsai, 1989): 
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The corrected AICc should be applied since the original AIC (Akaike, 1974), defined as 
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with the SSR as the sum of squared residuals [Eq. 3]. In general, the AIC is prone to over-

fitting for problems with a rather small number of observations n. In most incubation studies 
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the n/p ratio would be smaller than 40, which points to the use of the AICc. Smallest, i.e. more 

negative, AICc values characterize the best model. Notably, the procedures described above 1010 

will help to identify the best model, i.e. the model providing the smallest error in relation to a 

minimum number of model parameters. However, it will not necessarily identify the ‘true’ 

model. 
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