000844624 001__ 844624
000844624 005__ 20210129233017.0
000844624 0247_ $$2doi$$a10.1175/BAMS-D-16-0151.1
000844624 0247_ $$2ISSN$$a0003-0007
000844624 0247_ $$2ISSN$$a1520-0477
000844624 0247_ $$2Handle$$a2128/18776
000844624 0247_ $$2WOS$$aWOS:000433893400012
000844624 0247_ $$2altmetric$$aaltmetric:29752791
000844624 037__ $$aFZJ-2018-02023
000844624 041__ $$aEnglish
000844624 082__ $$a550
000844624 1001_ $$0P:(DE-HGF)0$$aJackson, D. R.$$b0$$eCorresponding author
000844624 245__ $$aThe South Georgia Wave Experiment (SG-WEX) – a means for improved analysis of gravity waves and low-level wind impacts generated from mountainous islands
000844624 260__ $$aBoston, Mass.$$bASM$$c2018
000844624 3367_ $$2DRIVER$$aarticle
000844624 3367_ $$2DataCite$$aOutput Types/Journal article
000844624 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528103043_1476
000844624 3367_ $$2BibTeX$$aARTICLE
000844624 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844624 3367_ $$00$$2EndNote$$aJournal Article
000844624 520__ $$aGravity waves (GWs) play an important role in many atmospheric processes. However, the observation-based understanding of GWs is limited, and representing them in numerical models is difficult. Recent studies show that small islands can be intense sources of GWs, with climatologically significant effects on the atmospheric circulation. South Georgia, in the South Atlantic, is a notable source of such “small island” waves. GWs are usually too small scale to be resolved by current models, so their effects are represented approximately using resolved model fields (parameterization). However, the small-island waves are not well represented by such parameterizations, and the explicit representation of GWs in very-high-resolution models is still in its infancy. Steep islands such as South Georgia are also known to generate low-level wakes, affecting the flow hundreds of kilometers downwind. These wakes are also poorly represented in models.We present results from the South Georgia Wave Experiment (SG-WEX) for 5 July 2015. Analysis of GWs from satellite observations is augmented by radiosonde observations made from South Georgia. Simulations were also made using high-resolution configurations of the Met Office Unified Model (UM). Comparison with observations indicates that the UM performs well for this case, with realistic representation of GW patterns and low-level wakes. Examination of a longer simulation period suggests that the wakes generally are well represented by the model. The realism of these simulations suggests they can be used to develop parameterizations for use at coarser model resolutions.
000844624 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000844624 588__ $$aDataset connected to CrossRef
000844624 7001_ $$0P:(DE-HGF)0$$aGadian, A.$$b1
000844624 7001_ $$0P:(DE-HGF)0$$aHindley, N. P.$$b2
000844624 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, L.$$b3
000844624 7001_ $$0P:(DE-HGF)0$$aHughes, J.$$b4
000844624 7001_ $$0P:(DE-HGF)0$$aKing, J.$$b5
000844624 7001_ $$0P:(DE-HGF)0$$aMoffat-Griffin, T.$$b6
000844624 7001_ $$0P:(DE-HGF)0$$aMoss, A. C.$$b7
000844624 7001_ $$0P:(DE-HGF)0$$aRoss, A. N.$$b8
000844624 7001_ $$0P:(DE-HGF)0$$aVosper, S. B.$$b9
000844624 7001_ $$0P:(DE-HGF)0$$aWright, C. J.$$b10
000844624 7001_ $$0P:(DE-HGF)0$$aMitchell, N. J.$$b11
000844624 773__ $$0PERI:(DE-600)2029396-3$$a10.1175/BAMS-D-16-0151.1$$gp. BAMS-D-16-0151.1$$p1027–1040$$tBulletin of the American Meteorological Society$$v99$$x1520-0477$$y2018
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.pdf$$yOpenAccess
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.gif?subformat=icon$$xicon$$yOpenAccess
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844624 8564_ $$uhttps://juser.fz-juelich.de/record/844624/files/bams-d-16-0151.1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000844624 909CO $$ooai:juser.fz-juelich.de:844624$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000844624 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b3$$kFZJ
000844624 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000844624 9141_ $$y2018
000844624 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844624 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844624 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844624 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bB AM METEOROL SOC : 2015
000844624 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bB AM METEOROL SOC : 2015
000844624 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844624 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844624 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844624 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844624 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844624 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844624 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844624 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844624 920__ $$lyes
000844624 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000844624 980__ $$ajournal
000844624 980__ $$aVDB
000844624 980__ $$aUNRESTRICTED
000844624 980__ $$aI:(DE-Juel1)JSC-20090406
000844624 9801_ $$aFullTexts