001     844625
005     20210129233018.0
024 7 _ |a 10.1088/1361-648X/aab22e
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a pmid:29480162
|2 pmid
024 7 _ |a WOS:000427968800001
|2 WOS
024 7 _ |a altmetric:34815945
|2 altmetric
037 _ _ |a FZJ-2018-02024
082 _ _ |a 530
100 1 _ |0 P:(DE-Juel1)130741
|a Jones, Robert O.
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Bonding in phase change materials: concepts and misconceptions
260 _ _ |a Bristol
|b IOP Publ.
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1521643901_14917
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Bonding concepts originating in chemistry are surveyed from a condensed matter perspective, beginning around 1850 with 'valence' and the word 'bond' itself. The analysis of chemical data in the 19th century resulted in astonishing progress in understanding the connectivity and stereochemistry of molecules, almost without input from physicists until the development of quantum mechanics in 1925 and afterwards. The valence bond method popularized by Pauling and the molecular orbital methods of Hund, Mulliken, Bloch, and Hückel play major roles in the subsequent development, as does the central part played by the kinetic energy in covalent bonding (Ruedenberg and others). 'Metallic' (free electron) and related approaches, including pseudopotential and density functional theories, have been remarkably successful in understanding structures and bonding in molecules and solids. We discuss these concepts in the context of phase change materials, which involve the rapid and reversible transition between amorphous and crystalline states, and note the confusion that some have caused, in particular 'resonance' and 'resonant bonding'.
536 _ _ |0 G:(DE-HGF)POF3-142
|a 142 - Controlling Spin-Based Phenomena (POF3-142)
|c POF3-142
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-143
|a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
773 _ _ |0 PERI:(DE-600)1472968-4
|a 10.1088/1361-648X/aab22e
|g Vol. 30, no. 15, p. 153001 -
|n 15
|p 153001
|t Journal of physics / Condensed matter
|v 30
|x 1361-648X
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844625/files/Jones_2018_J._Phys.__Condens._Matter_30_153001.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844625
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)130741
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-142
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |0 G:(DE-HGF)POF3-143
|1 G:(DE-HGF)POF3-140
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b J PHYS-CONDENS MAT : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21