001     844630
005     20240711085626.0
020 _ _ |a 978-3-95806-306-8
024 7 _ |2 Handle
|a 2128/18057
024 7 _ |2 ISSN
|a 1866-1793
037 _ _ |a FZJ-2018-02029
041 _ _ |a German
100 1 _ |0 P:(DE-Juel1)165688
|a Beez, Alexander
|b 0
|e Corresponding author
|g male
|u fzj
245 _ _ |a Mechanismen der chrombasierten Degradation von metallgestützten Festoxid-Brennstoffzellen
|f 2014-10-01 - 2018-02-06
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek Verlag
|c 2018
300 _ _ |a 144 S.
336 7 _ |2 DataCite
|a Output Types/Dissertation
336 7 _ |0 PUB:(DE-HGF)3
|2 PUB:(DE-HGF)
|a Book
|m book
336 7 _ |2 ORCID
|a DISSERTATION
336 7 _ |2 BibTeX
|a PHDTHESIS
336 7 _ |0 2
|2 EndNote
|a Thesis
336 7 _ |0 PUB:(DE-HGF)11
|2 PUB:(DE-HGF)
|a Dissertation / PhD Thesis
|b phd
|m phd
|s 1523626377_10212
336 7 _ |2 DRIVER
|a doctoralThesis
490 0 _ |a Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment
|v 413
502 _ _ |a Universität Bochum, Diss., 2018
|b Dissertation
|c Universität Bochum
|d 2018
520 _ _ |a The aim of the present work is the investigation of the chromium degradation of metal supported solid oxide fuel cells (MSC). The starting point is the MSC concept of Plansee SE which utilizes a La$_{0.58}$Sr$_{0.40}$Co$_{0.20}$Fe$_{0.80}$O$_{3-\delta}$ (LSCF) cathode. From the results of three work packages, conclusions are drawn how chromium degradation influences a MSC cathode and if there is a possibility to prevent this interaction. Using thin-film samples, strontium segregation, a key process of chromium degradation, is systematically investigated. For the first time a quantitative comparison between LSCF and La$_{0.58}$Sr$_{0.40}$Co$_{1.00}$O$_{3-\delta}$ (LSC) cathode material using ICP-MS is conducted. The combination of imaging (SEM) and spectroscopic (XPS) methods gives strong evidence that the strontium segregation depends on the thermal treatment of the sample and that it is stronger on cobalt rich LSC compared to LSCF. Moreover, methods for accelerated testing have been developed to poison samples with porous cathode layers reproducibly. Such methods enable a quick comparison of different cathodes before using them in a stack test. While the poisoning via gas phases proved to be poorly reproducible, the desired effect could be achieved with solid state poisoning. It can be shown that both poisoning techniques have the same influence on the impedance spectra of poisoned cells. The third work package deals with the chromium related degradation on stack level and its dependence on the oxygen partial pressure. Depending on the operation conditions, the deposition of a chromium containing phase can be triggered at the interface between the LSCF cathode and the gadolinium doped ceria diffusion barrier when using an LSCF cathode. This must be prevented. The combined results of all three work packages allow the following conclusions: (i) a low operation temperature is helpful to slow down the strontium segregation. (ii) with the solid state poisoning, a method for systematic and reproducible poisoning of single cells is available. With this, different stages of chromium poisoning can be simulated in short time.(iii) a future MSC stack design must be geared to avoid gradients in oxygen partial pressurethroughout the cathode layer. Otherwise, not only the chromium degradation but also the intrinsic degradation of the LSCF cathode is enhanced. (iv) the most effective way to protect the cathode from chromium poisoning is the use of a dense interconnect coating.
536 _ _ |0 G:(DE-HGF)POF3-135
|a 135 - Fuel Cells (POF3-135)
|c POF3-135
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)SOFC-20140602
|a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|c SOFC-20140602
|f SOFC
|x 1
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/844630/files/Energie_Umwelt_413.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:844630
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165688
|a Forschungszentrum Jülich
|b 0
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
|a Creative Commons Attribution CC BY 4.0
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a phd
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a book
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21