% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@ARTICLE{Agostini:844632,
      author       = {Agostini, M. and Altenmüller, K. and Appel, S. and
                      Atroshchenko, V. and Bagdasarian, Z. and Basilico, D. and
                      Bellini, G. and Benziger, J. and Bick, D. and Bonfini, G.
                      and Borodikhina, L. and Bravo, D. and Caccianiga, B. and
                      Calaprice, F. and Caminata, A. and Canepa, M. and Caprioli,
                      S. and Carlini, M. and Cavalcante, P. and Chepurnov, A. and
                      Choi, K. and D’Angelo, D. and Davini, S. and Derbin, A.
                      and Ding, X. F. and Di Noto, L. and Drachnev, I. and
                      Fomenko, K. and Formozov, A. and Franco, D. and Froborg, F.
                      and Gabriele, F. and Galbiati, C. and Ghiano, C. and
                      Giammarchi, M. and Goeger-Neff, M. and Goretti, A. and
                      Gromov, M. and Hagner, C. and Houdy, T. and Hungerford, E.
                      and Ianni, Aldo and Ianni, Andrea and Jany, A. and Jeschke,
                      D. and Kobychev, V. and Korablev, D. and Korga, G. and Kryn,
                      D. and Laubenstein, M. and Litvinovich, E. and Lombardi, F.
                      and Lombardi, P. and Ludhova, L. and Lukyanchenko, G. and
                      Machulin, I. and Magnozzi, M. and Manuzio, G. and Marcocci,
                      S. and Martyn, J. and Meroni, E. and Meyer, M. and
                      Miramonti, L. and Misiaszek, M. and Muratova, V. and
                      Neumair, B. and Oberauer, L. and Opitz, B. and Ortica, F.
                      and Pallavicini, M. and Papp, L. and Pocar, A. and Ranucci,
                      G. and Razeto, A. and Re, A. and Romani, A. and Roncin, R.
                      and Rossi, N. and Schönert, S. and Semenov, D. and Shakina,
                      P. and Skorokhvatov, M. and Smirnov, O. and Sotnikov, A. and
                      Stokes, L. F. F. and Suvorov, Y. and Tartaglia, R. and
                      Testera, G. and Thurn, J. and Toropova, M. and Unzhakov, E.
                      and Vishneva, A. and Vogelaar, R. B. and von Feilitzsch, F.
                      and Wang, H. and Weinz, S. and Wojcik, M. and Wurm, M. and
                      Yokley, Z. and Zaimidoroga, O. and Zavatarelli, S. and
                      Zuber, K. and Zuzel, G.},
      title        = {{T}he {M}onte {C}arlo simulation of the {B}orexino
                      detector},
      journal      = {Astroparticle physics},
      volume       = {97},
      issn         = {0927-6505},
      address      = {Amsterdam [u.a.]},
      publisher    = {Elsevier Science},
      reportid     = {FZJ-2018-02031},
      pages        = {136 - 159},
      year         = {2018},
      abstract     = {We describe the Monte Carlo (MC) simulation of the Borexino
                      detector and the agreement of its output with data. The
                      Borexino MC “ab initio” simulates the energy loss of
                      particles in all detector components and generates the
                      resulting scintillation photons and their propagation within
                      the liquid scintillator volume. The simulation accounts for
                      absorption, reemission, and scattering of the optical
                      photons and tracks them until they either are absorbed or
                      reach the photocathode of one of the photomultiplier tubes.
                      Photon detection is followed by a comprehensive simulation
                      of the readout electronics response. The MC is tuned using
                      data collected with radioactive calibration sources deployed
                      inside and around the scintillator volume. The simulation
                      reproduces the energy response of the detector, its
                      uniformity within the fiducial scintillator volume relevant
                      to neutrino physics, and the time distribution of detected
                      photons to better than $1\%$ between 100 keV and several
                      MeV. The techniques developed to simulate the Borexino
                      detector and their level of refinement are of possible
                      interest to the neutrino community, especially for current
                      and future large-volume liquid scintillator experiments such
                      as Kamland–Zen, SNO+, and Juno.},
      cin          = {IKP-2},
      ddc          = {540},
      cid          = {I:(DE-Juel1)IKP-2-20111104},
      pnm          = {612 - Cosmic Matter in the Laboratory (POF3-612)},
      pid          = {G:(DE-HGF)POF3-612},
      typ          = {PUB:(DE-HGF)16},
      UT           = {WOS:000423640700017},
      doi          = {10.1016/j.astropartphys.2017.10.003},
      url          = {https://juser.fz-juelich.de/record/844632},
}