001     844645
005     20210129233024.0
024 7 _ |2 doi
|a 10.3233/978-1-61499-843-3-369
037 _ _ |a FZJ-2018-02040
041 _ _ |a English
100 1 _ |0 P:(DE-Juel1)156619
|a Baumeister, P. F.
|b 0
|e Corresponding author
111 2 _ |a Parallel Computing
|c Bologna
|d 2017-09-12 - 2017-09-15
|g ParCo2017
|w Italy
245 _ _ |a Strategies for Forward Modelling of Infrared Radiative Transfer on GPUs
260 _ _ |a Amsterdam
|b IOS Press
|c 2018
295 1 0 |a Parallel Computing is Everywhere
300 _ _ |a 369 - 380
336 7 _ |2 ORCID
|a CONFERENCE_PAPER
336 7 _ |0 33
|2 EndNote
|a Conference Paper
336 7 _ |2 BibTeX
|a INPROCEEDINGS
336 7 _ |2 DRIVER
|a conferenceObject
336 7 _ |2 DataCite
|a Output Types/Conference Paper
336 7 _ |0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|a Contribution to a conference proceedings
|b contrib
|m contrib
|s 1540208922_3608
336 7 _ |0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|a Contribution to a book
|m contb
490 0 _ |a Advances in Parallel Computing
|v 32
520 _ _ |a Satellite-based remote sensing in the mid-infrared spectral region can deliver a wealth of information on pressure, temperature, clouds and aerosols, and trace gas concentrations in the atmosphere. Interpreting the satellite measurements requires to solve an inverse modelling problem based on variational methods and a forward model evaluating the radiative transfer equations. As state-of-the-art satellite measurement campaigns require Petascale systems to process the data in due time, graphical processing units are employed for the high-throughput problem of computing the forward model for a given atmospheric state. We explore features of the considered architecture as well as relevant performance signatures of the different implementations to improve our understanding on opportunities for efficient exploitation of GPU-accelerated architectures based on the POWER2processor for this class of applications. Scalability is a key aspect as the application is known to scale well on massively-parallel architectures.
536 _ _ |0 G:(DE-HGF)POF3-511
|a 511 - Computational Science and Mathematical Methods (POF3-511)
|c POF3-511
|f POF III
|x 0
536 _ _ |0 G:(DE-HGF)POF3-513
|a 513 - Supercomputer Facility (POF3-513)
|c POF3-513
|f POF III
|x 1
700 1 _ |0 P:(DE-HGF)0
|a Rombach, B.
|b 1
700 1 _ |0 P:(DE-Juel1)176815
|a Hater, Thorsten
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)129121
|a Griessbach, S.
|b 3
700 1 _ |0 P:(DE-Juel1)129125
|a Hoffmann, L.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Bühler, M.
|b 5
700 1 _ |0 P:(DE-Juel1)144441
|a Pleiter, D.
|b 6
773 _ _ |a 10.3233/978-1-61499-843-3-369
909 C O |o oai:juser.fz-juelich.de:844645
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156619
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)136869
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129121
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)129125
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)144441
|a Forschungszentrum Jülich
|b 6
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Computational Science and Mathematical Methods
|x 0
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |0 G:(DE-HGF)POF3-513
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|v Supercomputer Facility
|x 1
|l Supercomputing & Big Data
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21