001     844653
005     20220930130144.0
024 7 _ |a 10.1038/s41586-018-0223-y
|2 doi
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a pmid:29950622
|2 pmid
024 7 _ |a WOS:000436594300057
|2 WOS
024 7 _ |a altmetric:44207131
|2 altmetric
037 _ _ |a FZJ-2018-02048
082 _ _ |a 070
100 1 _ |a Esat, Taner
|0 P:(DE-Juel1)156533
|b 0
|u fzj
245 _ _ |a A standing molecule as a single-electron field emitter
260 _ _ |a London [u.a.]
|c 2018
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1531750577_5834
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Scanning probe microscopy makes it possible to image and spectroscopically characterize nanoscale objects, and to manipulate1,2,3 and excite4,5,6,7,8 them; even time-resolved experiments are now routinely achieved9,10. This combination of capabilities has enabled proof-of-principle demonstrations of nanoscale devices, including logic operations based on molecular cascades11, a single-atom transistor12, a single-atom magnetic memory cell13 and a kilobyte atomic memory14. However, a key challenge is fabricating device structures that can overcome their attraction to the underlying surface and thus protrude from the two-dimensional flatlands of the surface. Here we demonstrate the fabrication of such a structure: we use the tip of a scanning probe microscope to lift a large planar aromatic molecule (3,4,9,10-perylenetetracarboxylic-dianhydride) into an upright, standing geometry on a pedestal of two metal (silver) adatoms. This atypical and surprisingly stable upright orientation of the single molecule, which under all known circumstances adsorbs flat on metals15,16, enables the system to function as a coherent single-electron field emitter. We anticipate that other metastable adsorbate configurations might also be accessible, thereby opening up the third dimension for the design of functional nanostructures on surfaces.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Friedrich, Niklas
|0 P:(DE-Juel1)171486
|b 1
700 1 _ |a Tautz, F. Stefan
|0 P:(DE-Juel1)128791
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Temirov, Ruslan
|0 P:(DE-Juel1)128792
|b 3
|u fzj
773 _ _ |a 10.1038/s41586-018-0223-y
|g Vol. 558, no. 7711, p. 573 - 576
|0 PERI:(DE-600)1413423-8
|n 7711
|p 573 - 576
|t Nature
|v 558
|y 2018
|x 0028-0836
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/1267_9000041073_2676111102_DE_Forschungszentrum%20J%C3%BC.PDF
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844653/files/s41586-018-0223-y-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844653
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156533
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)128791
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128792
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b NATURE : 2015
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21