000844679 001__ 844679
000844679 005__ 20240711092244.0
000844679 0247_ $$2doi$$a10.3390/met8040219
000844679 0247_ $$2Handle$$a2128/17936
000844679 0247_ $$2WOS$$aWOS:000434882800022
000844679 0247_ $$2altmetric$$aaltmetric:34971292
000844679 037__ $$aFZJ-2018-02064
000844679 041__ $$aEnglish
000844679 082__ $$a530
000844679 1001_ $$0P:(DE-Juel1)169125$$aHüter, Claas$$b0$$eCorresponding author$$ufzj
000844679 245__ $$aLinking ab initio data on hydrogen and carbon in steels to statistical and continuum descriptions
000844679 260__ $$aBasel$$bMDPI$$c2018
000844679 3367_ $$2DRIVER$$aarticle
000844679 3367_ $$2DataCite$$aOutput Types/Journal article
000844679 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522738440_30785
000844679 3367_ $$2BibTeX$$aARTICLE
000844679 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844679 3367_ $$00$$2EndNote$$aJournal Article
000844679 520__ $$aWe present a selection of scale transfer approaches from the electronic to the continuum regime for topics relevant to hydrogen embrittlement. With a focus on grain boundary related hydrogen embrittlement, we discuss the scale transfer for the dependence of the carbon solution behavior in steel on elastic effects and the hydrogen solution in austenitic bulk regions depending on Al content. We introduce an approximative scheme to estimate grain boundary energies for varying carbon and hydrogen population. We employ this approach for a discussion of the suppressing influence of Al on the substitution of carbon with hydrogen at grain boundaries, which is an assumed mechanism for grain boundary hydrogen embrittlement. Finally, we discuss the dependence of hydride formation on the grain boundary stiffness.
000844679 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000844679 588__ $$aDataset connected to CrossRef
000844679 7001_ $$0P:(DE-Juel1)130979$$aSpatschek, Robert$$b1$$ufzj
000844679 7001_ $$0P:(DE-Juel1)169962$$aWeikamp, Marc$$b2$$ufzj
000844679 773__ $$0PERI:(DE-600)2662252-X$$a10.3390/met8040219$$gVol. 8, no. 4, p. 219 -$$n4$$p219 -$$tMetals$$v8$$x2075-4701$$y2018
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.pdf
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.gif?subformat=icon$$xicon
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.jpg?subformat=icon-1440$$xicon-1440
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.jpg?subformat=icon-180$$xicon-180
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.jpg?subformat=icon-640$$xicon-640
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/Invoice_MDPI_metals-282580_871.06EUR.pdf?subformat=pdfa$$xpdfa
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/metals-08-00219.pdf$$yOpenAccess
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/metals-08-00219.gif?subformat=icon$$xicon$$yOpenAccess
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/metals-08-00219.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/metals-08-00219.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000844679 8564_ $$uhttps://juser.fz-juelich.de/record/844679/files/metals-08-00219.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000844679 8767_ $$8metals-282580$$92018-03-23$$d2018-03-23$$eAPC$$jZahlung erfolgt$$pmetals-282580
000844679 909CO $$ooai:juser.fz-juelich.de:844679$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000844679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169125$$aForschungszentrum Jülich$$b0$$kFZJ
000844679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130979$$aForschungszentrum Jülich$$b1$$kFZJ
000844679 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169962$$aForschungszentrum Jülich$$b2$$kFZJ
000844679 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000844679 9141_ $$y2018
000844679 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844679 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844679 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000844679 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMETALS-BASEL : 2015
000844679 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000844679 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000844679 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844679 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844679 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844679 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000844679 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844679 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844679 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844679 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000844679 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000844679 9801_ $$aAPC
000844679 9801_ $$aFullTexts
000844679 980__ $$ajournal
000844679 980__ $$aVDB
000844679 980__ $$aUNRESTRICTED
000844679 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844679 980__ $$aI:(DE-82)080011_20140620
000844679 980__ $$aAPC
000844679 981__ $$aI:(DE-Juel1)IMD-1-20101013