000844682 001__ 844682
000844682 005__ 20240712084613.0
000844682 0247_ $$2doi$$a10.1016/j.ijheatmasstransfer.2018.02.011
000844682 0247_ $$2ISSN$$a0017-9310
000844682 0247_ $$2ISSN$$a1879-2189
000844682 0247_ $$2WOS$$aWOS:000434887000040
000844682 037__ $$aFZJ-2018-02067
000844682 082__ $$a620
000844682 1001_ $$0P:(DE-Juel1)166068$$aMeunders, Andreas$$b0
000844682 245__ $$aVelocity measurements of a bench scale buoyant plume applying particle image velocimetry
000844682 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2018
000844682 3367_ $$2DRIVER$$aarticle
000844682 3367_ $$2DataCite$$aOutput Types/Journal article
000844682 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522131877_17560
000844682 3367_ $$2BibTeX$$aARTICLE
000844682 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844682 3367_ $$00$$2EndNote$$aJournal Article
000844682 520__ $$aThis paper presents the experimental investigation of the buoyant plume above an electrically heated block of copper. The velocity field in a vertical plane along the plume axis is investigated via particle image velocimetry. Experiments with electrical power from 30  W to 96  W are carried out, which lead to heat source temperatures of 149–307  °C. The resulting flow is laminar for the lowest power setting and undergoes a transition to turbulent flow for higher heat inputs. With increasing heat input the point of transition from laminar to turbulent flow occurs at lower heights.Time-averaged velocity fields are presented together with the according measurement uncertainty that results from the evaluation with particle image velocimetry. Based on these velocity fields a number of characteristic values for the plume is derived in different heights, e.g. maximum velocities, plume widths and flow integrals. In order to further evaluate the transition from laminar to turbulent flow the vertical velocity and the standard deviation of the horizontal velocity along the plume axis and as a function of the Grashof number are investigated. The transition occurs at Grashof numbers in the range 4×10^8 < Gr < 2×10^9, which is in accordance with previous findings. In addition to the velocity measurements, the temperature stratification inside the enclosure is measured to quantify the ambient conditions.
000844682 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000844682 588__ $$aDataset connected to CrossRef
000844682 7001_ $$0P:(DE-Juel1)132044$$aArnold, Lukas$$b1$$eCorresponding author
000844682 7001_ $$0P:(DE-Juel1)138417$$aBelt, Alexander$$b2
000844682 7001_ $$0P:(DE-Juel1)161415$$aHundhausen, Alexander$$b3
000844682 773__ $$0PERI:(DE-600)2012726-1$$a10.1016/j.ijheatmasstransfer.2018.02.011$$gVol. 123, p. 473 - 488$$p473 - 488$$tInternational journal of heat and mass transfer$$v123$$x0017-9310$$y2018
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.pdf$$yRestricted
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.gif?subformat=icon$$xicon$$yRestricted
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844682 8564_ $$uhttps://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844682 909CO $$ooai:juser.fz-juelich.de:844682$$pVDB
000844682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166068$$aForschungszentrum Jülich$$b0$$kFZJ
000844682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132044$$aForschungszentrum Jülich$$b1$$kFZJ
000844682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138417$$aForschungszentrum Jülich$$b2$$kFZJ
000844682 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161415$$aForschungszentrum Jülich$$b3$$kFZJ
000844682 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000844682 9141_ $$y2018
000844682 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HEAT MASS TRAN : 2015
000844682 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844682 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844682 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844682 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844682 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844682 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844682 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844682 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844682 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844682 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844682 920__ $$lyes
000844682 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000844682 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000844682 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x2
000844682 980__ $$ajournal
000844682 980__ $$aVDB
000844682 980__ $$aI:(DE-Juel1)IAS-7-20180321
000844682 980__ $$aI:(DE-Juel1)JSC-20090406
000844682 980__ $$aI:(DE-Juel1)IEK-6-20101013
000844682 980__ $$aUNRESTRICTED
000844682 981__ $$aI:(DE-Juel1)IFN-2-20101013