001     844682
005     20240712084613.0
024 7 _ |a 10.1016/j.ijheatmasstransfer.2018.02.011
|2 doi
024 7 _ |a 0017-9310
|2 ISSN
024 7 _ |a 1879-2189
|2 ISSN
024 7 _ |a WOS:000434887000040
|2 WOS
037 _ _ |a FZJ-2018-02067
082 _ _ |a 620
100 1 _ |a Meunders, Andreas
|0 P:(DE-Juel1)166068
|b 0
245 _ _ |a Velocity measurements of a bench scale buoyant plume applying particle image velocimetry
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522131877_17560
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This paper presents the experimental investigation of the buoyant plume above an electrically heated block of copper. The velocity field in a vertical plane along the plume axis is investigated via particle image velocimetry. Experiments with electrical power from 30  W to 96  W are carried out, which lead to heat source temperatures of 149–307  °C. The resulting flow is laminar for the lowest power setting and undergoes a transition to turbulent flow for higher heat inputs. With increasing heat input the point of transition from laminar to turbulent flow occurs at lower heights.Time-averaged velocity fields are presented together with the according measurement uncertainty that results from the evaluation with particle image velocimetry. Based on these velocity fields a number of characteristic values for the plume is derived in different heights, e.g. maximum velocities, plume widths and flow integrals. In order to further evaluate the transition from laminar to turbulent flow the vertical velocity and the standard deviation of the horizontal velocity along the plume axis and as a function of the Grashof number are investigated. The transition occurs at Grashof numbers in the range 4×10^8 < Gr < 2×10^9, which is in accordance with previous findings. In addition to the velocity measurements, the temperature stratification inside the enclosure is measured to quantify the ambient conditions.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Arnold, Lukas
|0 P:(DE-Juel1)132044
|b 1
|e Corresponding author
700 1 _ |a Belt, Alexander
|0 P:(DE-Juel1)138417
|b 2
700 1 _ |a Hundhausen, Alexander
|0 P:(DE-Juel1)161415
|b 3
773 _ _ |a 10.1016/j.ijheatmasstransfer.2018.02.011
|g Vol. 123, p. 473 - 488
|0 PERI:(DE-600)2012726-1
|p 473 - 488
|t International journal of heat and mass transfer
|v 123
|y 2018
|x 0017-9310
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844682/files/1-s2.0-S0017931017324274-main-1.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844682
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166068
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132044
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)138417
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161415
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HEAT MASS TRAN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
920 1 _ |0 I:(DE-Juel1)IEK-6-20101013
|k IEK-6
|l Nukleare Entsorgung und Reaktorsicherheit
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)IEK-6-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IFN-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21