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ABSTRACT 
Fires in road tunnels constitute complex scenarios, described by risk indicators, including possible 
interactions between the fire, tunnel users and safety measures. More and more methodologies for risk 
analysis quantify consequences of complex scenarios with complex consequence models. An example 
for a complex consequence model is the computational fluid dynamics coupled with microscopic 
evacuation model Fire Dynamics Simulator (FDS) with FDS+Evac. However, the high computational 
effort of complex consequence models often limits the number of scenarios in practice, which leads to 
simplifications in the scenarios. Accordingly, there is a challenge to consider complex scenarios in 
risk analysis. 
To face this challenge, we improved the metamodel used in the methodology for risk analysis 
presented on ISTSS 2016. Now, the metamodel consists of the projection array-based design, the 
moving least squares method, and the prediction interval to quantify the metamodel uncertainty. The 
metamodel quickly interpolates the consequences of few complex scenarios analysed with the 
complex consequence models to a large number of arbitrary scenarios. Additionally, we implemented 
two adaptions in the projection array-based design: first, the sequential refinement with focus on high 
metamodel uncertainties; and the combination of two designs for FDS and FDS+Evac. 
In summary, we analyse the effects of three refinement steps on the metamodel and on the results of 
risk analysis. We observe convergence in both after the second step (ten scenarios in FDS, 192 
scenarios in FDS+Evac) in comparison to ISTSS 2016 (20 scenarios in FDS, 800 evacuation 
scenarios). Thus, we reduced the number of scenarios remarkably with the improved metamodel. 
In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further 
emphasise that the metamodel is broadly applicable on various experimental or modelling issues in 
fire safety engineering. 
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NOMENCLATURE 
 
Roman and Greek letters 

𝑑 number of risk indicators (dimensions) in 𝑥⃗ 
𝑓𝑎 = [𝐹𝐴****, 𝐹𝐴] failure of tunnel alarm [no, yes] 
𝐻𝑅𝑅/01  maximum heat release rate /MW 
𝑁34 number of tunnel users 
𝑛 number of scenarios 

𝑝73893:; stretching factor 
𝑞=>(𝒔	) 90% quantile of 𝒔 
𝑠D(𝜉) variance of 𝜉 

𝒔	 = 𝒔	(𝝃) vector of the root of variances of 𝝃 
𝑡̃I  random realisation of the Student’s t-distribution 

𝑡:8J3,I critical value of the Student’s t-distribution 
𝑡/01  time to maximum heat release rate /s 



𝑡K89  maximum pre-evacuation time /s 
𝑥⃗ scenario 
𝑥L	 arbitrary (evacuation) scenario 
𝑋 experimental design for scenarios 
𝛼 two-sided confidence interval 
𝚫𝛏 vector of the prediction interval 
𝚫𝝃Q vector of metamodel uncertainty 

𝝃		 = 𝝃	(𝑋Q) metamodel for the fraction of fatalities in arbitrary scenarios 𝑋Q 
𝝃Q	 = 𝝃Q	(𝑋Q) uncertain 𝝃		 with the metamodel uncertainty 
𝝃	𝒄
	 = 𝝃	𝒄

	(𝑋9) vector of fraction of fatalities (complex consequence model) 
  
Superscripts and subscripts 

𝑐 complex consequence model 
𝑒 evacuation 
𝑓 fire 
𝑋 experimental design used as basis 

 
 
INTRODUCTION 
Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and 
safety measures like fire detection, tunnel alarm or emergency ventilation. Thus, many risk indicators, 
which are factors with effects on risks for tunnel users, describe the complex scenario. Several 
methodologies for risk analysis in road tunnels evolved during the last 15 years [1] to determine the 
risks and to evaluate the effects of safety measures. To take the complex scenarios into account, more 
and more of these methodologies now apply complex consequence models to quantify the 
consequences. The complex consequence models can consist of two parts: first, fire models like 
computational fluid dynamics models which simulate the spread of heat and smoke in a fire scenario; 
and second, microscopic evacuation models which simulate the movement of individual tunnel users 
as well as their interactions in an evacuation scenario. But complex consequence models cause high 
computational effort what often strongly limits the number of scenarios in practical applications. 
Furthermore, risk analysis requires consequences of an ‘infinite’ number of scenarios on the entire 
domain of risk indicators, e.g. from low to high heat release rates. Thus, risk analysis pursues a 
‘global objective’ instead of focusing on interesting regions of the domain, e.g. only on high heat 
release rates (local objective) [2]. Together with the high computational effort, the global objective 
limits the number of risk indicators leading to reduced complexity of scenarios, e.g. in [3]. 
Concluding, there is a challenge for risk analysis to integrate complex scenarios considering several 
risk indicators with complex consequence models. 
To face this challenge, we improved the metamodel used in our methodology for risk analysis 
published on ISTSS 2016 [4]. In general, a metamodel consists of two parts [5]. First, the 
experimental design defines the parameters of risk indicators for a small number of scenarios. Then, 
the consequences of these scenarios will be quantified with the complex consequence model and 
saved in a permanent data base. Second, the response surface model, interpolates the consequences 
from the data base to any arbitrary scenario. The interpolation is very quick allowing the analysis of 
‘infinite’ scenarios on the entire domain but causes uncertainties called metamodel uncertainty. 
Different models for both parts of the metamodel exist. First, several experimental designs address 
global objectives with good space-filling properties. Space-filling means an even spread of a small 
number of scenarios on the entire domain. For this purpose, Latin hypercube designs are very 
common [5], in particular with some optimisations in space-filling [6]. But the projection array-based 
design [7] improves the space-filling properties of Latin Hypercube designs in particular for high-
dimensional problems. Furthermore, it is possible to append new scenarios to an existing projection 
array-based design in sequential refinement steps. Second, first- or second-order models are typical 
response surface models often used for local objectives [5]. Instead, the moving least squares method 
focuses on the global objective [8]. Thus, it allows an accurate interpolation on the entire domain. 
Additionally, the prediction interval [9] quantifies the metamodel uncertainties of the moving least 



squares method. In brief, we adapted the models for both parts correspondingly in order to improve 
the metamodel. 
Consequently, this paper outlines the metamodel in Section ‘Methodology’ and Section ‘Results and 
discussion’ focuses on proofing its efficiency. In detail, we organised the paper as follows. Section 
‘Methodology’ consists of four subsections. First, ‘Risk analysis with complex consequence models’ 
describes the complex scenario, the risk indicators [4] and the computational fluid dynamics model 
Fire Dynamics Simulator FDS [10] and the microscopic evacuation model FDS+Evac [11]. Second, 
‘Experimental design’ deals with the projection array-based design [7]. We also outline our adaptions: 
the focus on particular regions of the domain during sequential refinement; and the combination of 
two experimental designs for FDS and FDS+Evac. Third, ‘Response Surface Model’ provides the 
background to the moving least squares method [8]. The subsection also addresses our 
implementation of the metamodel uncertainty based on the prediction interval [9]. And fourth, ‘Setup 
of the metamodel’ shortly summarises the setup of the metamodel and outlines the optimisation of the 
moving least squares models. Then, Section ‘Results and discussion’ shows the different refinement 
steps. The Subsection ‘Metamodel’ highlights their effects on the moving least squares model and the 
metamodel uncertainty. The Subsection ‘Risk analysis’ shows the effects on risk measures and 
discusses the advantages to the metamodel used in ISTSS 2016 [4]. Finally, Section ‘Conclusions’ 
concludes that first, the metamodel efficiently integrates complex scenarios and second, emphasises 
that the metamodel is not only limited to risk analysis but also applicable on various issues in fire 
safety engineering. 
 
METHODOLOGY 
We put the focus of this paper on the improved metamodel, which is now used within the same 
methodology for risk analysis presented in [4]. Thus, we only provide the essential information of the 
methodology for risk analysis in the first Subsection and refer to [4] for further information. Then, 
Subsections ‘Experimental design’ and ‘Response surface model’ describe in detail the first and 
second part of the metamodel. Finally, we summarise how to setup the metamodel in Subsection 
‘Setup of the metamodel’. 
 
Risk analysis with complex consequence models 
The methodology for risk analysis [4] comprises twelve risk indicators, which define the scenario as 
well as the initial frequency of the fire. Risk indicators are factors affecting the risks in the road tunnel 
and rely on probabilistic, empirical or analytical models. We chose the risk indicators based on a 
literature review described in [4,12] and quantified the results of risk analysis with the two risk 
measures [13]: first, the individual risk 𝑅JUV  is the annual frequency that a person being permanently 
in the tunnel will die due to a fire scenario; second, the societal risk, often presented in societal risk 
curves, is the annual frequency that a specified minimum number of persons will die due to a fire 
scenario. In summary, the risk measures depend on the consequences and on the initial frequency of 
fire in an ‘infinite’ number of arbitrary scenarios. 
In case of a fire, five risk indicators define the fire and the evacuation scenario 𝑥⃗ (see Table 1). Two 
of these risk indicators affect the spread of heat and smoke in the fire scenario 
𝑥⃗J
W = [𝐻𝑅𝑅/01,J , 𝑡/01,J]. The evacuation scenario, the evacuation of tunnel users during the fire 

scenario, considers three additional risk indicators 𝑥⃗X9 = [𝑥⃗X
W, 𝑡K89,X , 𝑁34,X, 𝑓𝑎X]. The maximum pre-

evacuation time 𝑡K89  is the maximum duration between the alarm of a tunnel user and the beginning 
of its movement. The individual pre-evacuation time of a tunnel user is governed by a uniform 
probability distribution between zero and 𝑡K89 . The risk indicators 𝑡/01  and 𝑡K89  use uniform 
probability distributions because of scarce statistical basis (see Table 1). For the risk indicators 
𝐻𝑅𝑅/01  and 𝑁34 the probability distributions are twofold: for the evaluation of the metamodel we 
apply uniform probability distributions (Table 1) and for risk analysis we use specific probability 
models (Table 2). 
 
Table 1: risk indicators with uniform probability distribution (white background: fire scenario, grey 

background: evacuation scenario) 
risk indicator term min max references / remark 



maximum heat release rate 𝐻𝑅𝑅/01  
/MW 

25 200 [14] 

time to maximum heat 
release rate 

𝑡/01  /s 600 1200 [15,16] 

maximum pre-evacuation 
time 

𝑡K89  /s 100 300 [17–19] 

number of tunnel users 𝑁34 30 180 30 vehicles in the evacuation 
area 

failure of tunnel alarm 𝑓𝑎 
(Boolean) 

no (𝐹𝐴****) yes (𝐹𝐴) 𝑝(𝐹𝐴) = 0.01;	𝑝(𝐹𝐴****) = 0.99 
[20] 

 
Table 2: risk indicators with specific probability models used for risk analysis (white background: fire 

scenario, grey background: evacuation scenario) 
risk indicator term remark 
maximum heat 
release rate 

𝐻𝑅𝑅/01  /MW discrete distribution from 5 MW to 100 MW according 
to [20]; assumption: no fatalities for 𝐻𝑅𝑅/01 <
25	𝑀𝑊  

number of 
tunnel users 

𝑁34 depending on the numbers of vehicles and vehicle 
types according to [20] 

 
The fire and evacuation scenarios include following interactions in the road tunnel shown in Figure 1. 
After the ignition, the heat release rate of the fire develops with an exponential curve with the risk 
indicators 𝐻𝑅𝑅/01  and 𝑡/01  [21]. Accordingly, heat and smoke spread within the tunnel. Following 
the fire detection triggered by the heat release rate, the longitudinal emergency ventilation begins and 
the tunnel alarm alerts all tunnel users at the same time (𝐹𝐴****). But in case of a failure of tunnel alarm 
(𝐹𝐴), each tunnel user individually gets alerted by smoke depending on its initial position in the 
evacuation area. A tunnel user starts to move towards the emergency exit after its alarm and its 
individual pre-evacuation time which is less than 𝑡K89 . Thereby, smoke can impede the individual 
movement speed and tunnel users might interact in particular close to the emergency exit or in 
scenarios with high number of tunnel users 𝑁34. A tunnel user accounts to the number of fatalities if 
its fractional effective dose reaches the fatal limit [11]. Finally, the evacuation scenario leads to the 
fraction of fatalities which is the number of fatalities per number of tunnel users 𝑁34. 
 

 
Figure 1 tunnel geometry of the scenario 
 
We use the complex consequence model to determine the fraction of fatalities 𝜉: in the fire and 
evacuation scenarios. The complex consequence model is a combination of the computational fluid 
dynamics model Fire Dynamics Simulator FDS [10] and the microscopic evacuation model 
FDS+Evac [11]. The fire model FDS simulates the spread of heat and smoke in the fire scenarios. The 
evacuation model FDS+Evac simulates the evacuation scenario and therefore adopts the spread of 
heat and smoke of a fire scenario simulated with FDS. FDS+Evac considers individual tunnel users 
with several random initial conditions like individual characteristics. To take the random initial 
conditions into account, we run 100 replications of one evacuation scenario. We then determine the 
mean fraction of fatalities 𝜉	: among these replications. Due to the high computational effort of FDS, 
we analyse less fire scenarios than evacuation scenarios with the complex consequence model. Thus, 
different evacuation scenarios consider the same fire scenario. 



To conclude this Subsection, we built the definition of risk indicators and the scenario on an extended 
literature review [4,12]. The scenario covers the fire growth, important safety measures including the 
failure of tunnel alarm as well as the individual reaction and evacuation of tunnel users. But a vast 
number of further risk indicators is available, e.g. the fraction of tunnel users with physical 
disabilities. For this reason, the metamodel easily allows to include adapted scenarios depending on 
special applications in the methodology for risk analysis. But even without further adaptions, the 
scenario with five risk indicators in total is more complex compared to other common methodologies 
for risk analysis, e.g. [3]. 
 
Experimental design 
The experimental design constitutes the first part of the metamodel and defines the set of 𝑛 scenarios. 
We denote the experimental design in general with 𝑋 = [𝑥⃗b, 𝑥⃗D,… , 𝑥⃗U]d with 𝑑 risk indicators 
defining a scenario 𝑥⃗J. Fire scenarios and evacuation scenarios depend on different risk indicators and 
thus have two separate experimental designs. The experimental designs for 𝑛W fire scenarios and 𝑛9 

evacuation scenarios are: 𝑋W = ef𝐻𝑅𝑅/01,J , 𝑡/01,Jg, … h
d
 and 

𝑋9 = ef𝐻𝑅𝑅/01,J , 𝑡/01,J , 𝑡K89,J ,𝑁34,Jg, … h
d
. It has to be mentioned that 𝑋9 considers 𝑑9 = 4 risk 

indicators. The fifths risk indicator, the failure of tunnel alarm 𝑓𝑎, is a Boolean and cannot be 
interpolated. Thus, the evacuation scenarios with 𝐹𝐴 and 𝐹𝐴 base on the same experimental design 
𝑋9. For the sake of simplicity, we use the same notation 𝑋9 for both cases and only specify the failure 
of tunnel alarm if required. Finally, FDS+Evac determines 𝝃	𝒄 = 𝝃𝑿𝒄

	 = [𝜉b:	, … , 𝜉Uk	
:	 ]	for 𝐹𝐴 and 𝐹𝐴. 

We setup separate initial experimental design 𝑋> for the fire scenarios and the evacuation scenarios 
and then combine them with projection array-based designs [7] (see Figure 2). The initial 
experimental design has only scenarios at its corners which is the minimum requirement for the 
response surface model. We use the projection array-based design for its improved space-filling 
properties and the option for sequential refinement. 
 

 
Figure 2 projection array-based design (circles) with the initial scenarios at the corners 

(squares). 𝑝73893:; = 0.1 with the underlying strata (solid lines) and substrata (dashed 
lines also behind the solid lines). 

 
The projection array-based design extends the Latin hypercube design [22] with an additional 
underlying structure of projection arrays. The Latin hypercube design consists of 𝑛 substrata in each 
dimension with exactly one scenario (lhd-condition). The projection arrays base on a fractional 
factorial design with l𝑛

m
no number of strata in each dimension where ⌈	⌉	denotes the ceiling function. 

Hence, the number of projection arrays is always equal or higher than the number of scenarios 𝑛. The 



projection array-based design demands maximum one scenario per projection array (pa-condition) as 
well as the lhd-condition. With regard to the lhd-condition we allow more than one scenario in a 
substratum for the initial experimental design. Therefore, all initial scenarios at the limits of each 
dimension count only as one scenario, e.g. leading to eight substrata for ten scenarios in Figure 2. For 
the sequential refinement of the projection array-based design, we augment the existing experimental 
design 𝑋Jrb with new scenarios 𝑋U9s in sequential refinement steps: 𝑋J = f𝑋Jrbd , 𝑋U9sd gd. In 
conclusion, the pa-condition improves the space-filling properties compared to common Latin 
hypercube designs and thus meets the global objective of risk analysis. 
We implemented two adaptions to the projection array-based design according to the requirements for 
risk analysis. First, to put focus on particular regions of the domain in each refinement step, we stretch 
the strata and substrata with the stretching parameter 𝑝73893:;, e.g. more to its centre with 𝑝73893:; > 1 
or more to its boundaries with 𝑝73893:; < 1 (Figure 2). The procedure allows to maintain the pa- and 
lhd-condition. Second, we combine the fire and evacuation scenarios of the two separate experimental 
designs 𝑋	W and 𝑋	9 to reduce the number of fire scenarios (𝑛9 > 𝑛W). For this, the evacuation scenario 
𝑥⃗J9

∗
∈ 𝑋9∗  adopts parameters of a fire scenario 𝑥⃗X

W ∈ 𝑋W leading to 𝑋9 with 𝑥⃗J9 =
[𝑥⃗X

W, 𝑡K89,J , 𝑁34,J , 𝑓𝑎J]. Thus, different evacuation scenarios consider the same fire scenario which 
obviously leads to the loss of lhd-condition in 𝑥⃗X

W whereas the pa-condition is not affected. To sum up, 
the focus on particular regions of the domain and the combination of experimental designs can reduce 
the number of scenarios in the experimental designs. 
 
Response surface model 
In the second part of the metamodel, the response surface model nearly interpolates 𝝃𝑿𝒄  for any 
arbitrary scenario 𝑥L to 𝜉		 = 𝜉w(𝑥L). Therefore we use the moving least squares method [8] because it 
accounts for the global objective of risk analysis. The moving least squares method bases on a local 
weighted least squares fit of a linear or quadratic polynomial. The fit is local because of the distance-
dependent weighting, based on a weighting function, of each 𝜉J: ∈ 𝝃	𝒄 to the local scenario 𝑥L. Thus, 
there are other fits for different scenarios 𝑥L and hence the moving least squares method is more 
flexible than fits of one global polynomial. We apply linear polynomials for 𝑋9 with 𝑛9

b/Vk ≤ 3 and 
else quadratic polynomials in the moving least squares method. We furthermore implemented three 
different functions types each having one weighting parameter [9,23] for the weighting function. For 
this reason, the moving least squares method is adaptable to the different refinement steps. Finally, the 
metamodel can quickly interpolate the fraction of fatalities 𝝃		 = 𝝃𝑿	 = 𝝃𝑿(𝑋Q9) for many arbitrary 
scenarios 𝑋Q9. 
Obviously, the interpolation causes uncertainties called metamodel uncertainties. The metamodel 
uncertainty	Δ𝜉| = |𝜉 − 𝜉:| is the uncertain difference Δ𝜉|(𝑥L		) between 𝜉(𝑥L		) to the unknown fraction of 
fatalities 𝜉:(𝑥L		) at any arbitrary scenario 𝑥L		 ∉ 𝑋9. We use the prediction interval [9] to quantify the 
metamodel uncertainty. The prediction interval was developed ‘for predicting the interval of "the 
value of a single future observation" at a point.’ [9]. The prediction interval, denoted with Δξ (or the 
vector 𝚫𝛏) is linear proportional to the root of the variance 𝑠D(𝜉)	(see equation 1). 
 

Δξ = Δξ(α) = 𝑡:8J3,I ⋅ 𝑠(𝜉)	 (1) 
 
The variance 𝑠D(𝜉) underlies a Student’s t-distribution with the two sided confidence interval 𝛼	and 
𝑡:8J3,I as the critical value of the Student’s t-distribution with 𝑛9 − 𝑑9 degrees of freedom. We derive 
the following probabilistic metamodel uncertainty from the prediction interval: Δ𝜉| = 𝑡̃I ⋅ 𝑠	(𝜉)	(or 
𝚫𝝃Q) with 𝑡̃I	as random realisation of the Student’s t-distribution from equation 1. As a result, the 
metamodel of the uncertain fraction of fatalities 𝜉| (or 𝝃Q) is given in equation 2. 
 

𝜉| = 𝜉 + Δ𝜉	� = 𝜉 + 𝑡̃I ⋅ 𝑠(𝜉) (2) 
 
Setup of the metamodel 
To sum up, we used the following procedure to setup a metamodel. First, we build the experimental 



designs 𝑋J
W and 𝑋J9 (Subsection ‘Experimental design’). Second, we run simulations with the complex 

consequence models to yield 𝝃𝑿𝒊
𝒄 . Third, we optimise the weighting function of moving least squares 

method to 𝝃𝑿𝒊
𝒄 . The aim of the optimisation is to reduce the 90% quantile 𝑞=>(𝒔	) of the variance	with 

𝒔	 = 𝒔	(𝝃) = [𝑠	(𝜉(𝑥⃗J9)), … ] for scenarios 𝑥⃗J9  evenly distributed on the entire domain. As result of the 
optimisation, the response surface model of the metamodel uses one of the three function types with 
the weighting parameter. Finally, we used the metamodel for two purposes in the Section ‘Results and 
discussion’: first, to evaluate the effects of refinement steps on the metamodel and to define 𝑝73893:; 
for the subsequent refinement step (Subsection ‘Metamodel’); second, to determine 𝝃Q of arbitrary 
scenarios 𝑋Q for the use in risk analysis (Subsection ‘Risk analysis’). 
 
RESULTS AND DISCUSSION 
In a first step, we setup two separate initial experimental designs 𝑋>

W and 𝑋>9 to analyse the effects of 
the refinement steps on the metamodel as well as on the risk analysis. Subsequently, we ran three 
additional refinement steps 𝑖 with the procedure described in Subsection ‘Setup of the metamodel’ of 
Section ‘Methodology’ with the parameters shown in Table 3. For each experimental design 𝑋𝑖𝑒, we 
found the highest values of the variance 𝑠D(𝜉)	 at the corners and boundaries of the domains. 
Accordingly, we focused the refinement steps for 𝑋D and 𝑋� on these regions with 𝑝73893:; < 1.0. As 
a result, we yielded the experimental designs shown in Figure 3. Finally, we now analyse the effects 
of the refinement steps on: first, the metamodel (Subsection ‘Metamodel’) using risk indicators shown 
in Table 1; second, results of risk analysis (Subsection ‘Risk analysis’) with risk indicators from Table 
2. 
 
Table 3: overview on the sequential refinement steps 

refinement step 𝑛W,  𝑛9 𝑝73893:; 𝑞=>�𝒔	|𝐹𝐴� 𝑞=>(𝒔|𝐹𝐴	) 
𝑋> 4 16 --- 0.157 0.147 
𝑋b 6 48 1.0 0.059 0.052 
𝑋D 10 96 0.1 0.029 0.029 
𝑋� 14 144 0.01 0.028 0.035 

 

 
Figure 3 fire scenarios of all sequential refinement steps with the underlying strata (solid lines) 

and substrata (dashed lines) for 𝑋� with 𝑝73893:; = 0.01. 
 



Metamodel 
Table 3 shows the global effects of refinement steps on the variance 𝒔(𝜉)		with 𝑞=>(𝒔). The variance 
steadily decreased until refinement step 𝑋D. The result of refinement step 𝑋� were twofold: for no 
failure of tunnel alarm (𝐹𝐴) the variance was nearly constant but for failure of tunnel alarm (𝐹𝐴) the 
variance even increased. Thus, the refinement step 𝑋D lead to minimum variance with 𝑛9

b/Vk < 3.2 
evacuation scenarios along one dimension. Due to the combination of the experimental designs we 
required only ten fire scenarios instead of 96 for each evacuation scenario. In conclusion, the 
sequential refinement focussing on regions of the domain together with the combination of two 
experimental designs can lead to small numbers of simulations with the complex consequence models 
and hence reduces the computational effort. 
The refinement steps had also local effects on the variance 𝑠D(𝜉)		. Exemplarily, Figure 4 shows the 
variance of the refinement steps 𝑋b and 𝑋D for evacuation scenarios with 𝑡K89 = 124	𝑠 and 𝑛34 = 48 
with no failure of tunnel alarm. Refinement step 𝑋b had increased variances in the centre of the 
domain. With four new fire scenarios and 48 new evacuation scenarios, refinement step 𝑋D clearly 
decreased the variance in this region. From this result, we draw two conclusions: first, no additional 
scenarios were required in the centre of the domain; second, the sequential refinement with focus 
regions with high metamodel uncertainty can lead to an efficient decrease of the metamodel 
uncertainty. 
 

 
Figure 4 root of the variance 𝒔(𝜉)		 for 𝑋b (left) and 𝑋D (right). The increased variance in the 

centre vanishes after the refinement step. 
 
The moving least squares models 𝝃𝑿𝟐 and 𝝃𝑿𝟑 shown in Figure 5 strongly resemble global fits 
according to their quadratic polynomials. We found that the weighting function optimised with 𝑞=>(𝒔) 
lead to nearly global polynomial fits with only little distance-dependent weighting. This could be a 
possible reason for the increasing variance between 𝑋D and 𝑋� with failure of alarm shown in Table 3: 
the moving least squares model 𝝃 did not adjust to new scenarios but stuck to the predefined global 
model of the quadratic polynomial. Or in other words: ‘the response surface model is governed by the 
model instead of being governed by the response surface’. To cope with this drawback, the 
optimisation of the weighting function could focus on another measure leading to stronger distance 
dependent weighting but perhaps also to higher metamodel uncertainties. 
 



 
Figure 5 moving least squares models 𝝃𝑿𝟏, 𝝃𝑿𝟐, 𝝃𝑿𝟑 
 
To sum up, 𝝃𝑿𝟐 and 𝝃𝑿𝟑 resemble global polynomial fits. But in particular with regard to the local 
effects of refinement steps, we conclude that the metamodel 𝝃𝑿𝟐 is close to the fraction of fatalities 
determined with the complex consequence models. For this reason, we apply the metamodel on risk 
analysis in the next Subsection. 
 
Risk analysis 
Subsequently, we analysed the effects of the experimental designs 𝑋>, 𝑋b, 𝑋D, 𝑋� on the risk 
measures. Therefore, we ran a risk analysis with 10� random scenarios 𝑋	�  and yielded the metamodel 
𝝃Q𝑿𝒊 considering the metamodel uncertainty. In summary, Table 4 and Figure 6 show the individual 
risk and the societal risk curve. 
 
Table 4: relative individual risk based on the metamodels of all refinement steps to the last refinement 

step 𝝃Q𝑿𝟑. 
metamodel 𝝃Q𝑿𝟎 𝝃Q𝑿𝟏 𝝃Q𝑿𝟐 𝝃Q𝑿𝟑 

𝑅JUV/𝑅JUV(𝝃𝑿𝟐) 7.91 2.36 1.09 1.00 
 

 
Figure 6 societal risk curve illustrating the effect of refinement steps. 
 
We can see from Table 4 that the individual risk converges clearly to differences of less than 10% 
between 𝝃Q𝑿𝟐 and 𝝃Q𝑿𝟑. The societal risk curves in Figure 6 show similar behaviour. On the one hand, 



𝝃Q𝑿𝟏still leads to differences to 𝝃Q𝑿𝟑 for small number of fatalities which can be directly linked to the 
metamodel. On the other hand, 𝝃Q𝑿𝟐only deviates from 𝝃Q𝑿𝟑for high number of fatalities in scenarios 
subjected to small initial frequencies. Thus, a great deal of these differences lies in the statistical 
uncertainties. Concluding, together with the results shown in Table 3, 𝝃Q𝑿𝟐 with ten fire scenarios and 
two times 96 evacuation scenarios (𝐹𝐴,𝐹𝐴), seems to be sufficient for risk analysis. 
In comparison, the methodology for risk analysis published in ISTSS 2016 [4] grounded on a 
metamodel with 20 fire scenarios and two times 400 evacuation scenarios. At this time, we had no 
option for sequential refinement in the experimental design. Thus, we simply made a very 
conservative guess of the required number of scenarios to get definite results which is the reason for 
the large discrepancy between the numbers of scenarios. From this experience we derive that the 
sequential refinement is very useful since it allows to get rough results quickly and then more accurate 
results step by step until sufficient accuracy is reached. 
 
CONCLUSIONS 
We developed a metamodel to consider complex scenarios in risk analysis including interactions 
between fire, tunnel users and safety measures. For this, we used the complex consequence model 
combining FDS [10] and FDS+Evac [11]. The metamodel consists of the projection array-based 
design [7] and the moving least squares method [8]. A probabilistic model based on the prediction 
interval [9] quantifies the metamodel uncertainty. Additionally, we implemented: first, the sequential 
refinement of the projection array-based design with focus on regions of the domain; and second, the 
combination of the experimental designs for fire and evacuation scenarios. As a result, the sequential 
refinement leads to convergence of the metamodel uncertainty and in risk measures with ten fire 
scenarios and two times 96 evacuation scenarios. In comparison to our conservative guess of the 
required number of scenarios published on ISTSS 2016, we state that the sequential refinement of 
experimental designs in general is more efficient. 
The metamodel efficiently integrates complex consequence models for two reasons: first, the 
sequential refinement with focus on regions; and second, the combination of experimental designs. 
First, the sequential refinement avoids conservatively large numbers of scenarios without knowledge 
on the accuracy of the results. 
Furthermore, we expect an efficient decrease of the metamodel uncertainty because of the local 
effects of sequential refinements. Second, the combination of both experimental designs reduces the 
number of simulations with the computationally expensive fire model. Hence, the metamodel allows 
considering complex scenarios with various risk indicators and interactions for risk analysis. This is 
an important characteristic with focus on future increasing sophistication in scenarios due to growing 
use of e.g. fixed fire-fighting systems or new energy carriers. 
However, one open issue within our metamodel remains: the current optimisation procedure of the 
weighting function of the moving least squares model leads to rather global polynomial fits in contrast 
to our expectations. But, the optimisation procedure reduces the global metamodel uncertainty. Thus, 
adaptions could, on the one hand, lead to stronger local effects in the metamodel, and on the other 
hand, increase the metamodel uncertainty. 
We finally have to emphasize that the metamodel is not limited to risk analysis but in general 
applicable on various experimental or modelling issues related to: (time) expensive procedures; 
various variables (high dimensional problems); and a global objective. To conclude, the metamodel is 
in particular interesting for many practical applications in fire safety demanding cost efficient 
solutions. 
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