001     844691
005     20210129233037.0
024 7 _ |a 10.1088/1361-648X/aaaeae
|2 doi
024 7 _ |a 0953-8984
|2 ISSN
024 7 _ |a 1361-648X
|2 ISSN
024 7 _ |a pmid:29498355
|2 pmid
024 7 _ |a WOS:000426721900002
|2 WOS
037 _ _ |a FZJ-2018-02076
082 _ _ |a 530
100 1 _ |a Park, S-H
|0 0000-0003-3127-7662
|b 0
|e Corresponding author
245 _ _ |a Two spin-canting textures in the antiferromagnetic phase AF1 of MnWO 4 based on the new polar atomistic model in P 2
260 _ _ |a Bristol
|c 2018
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524493922_31393
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The low temperature antiferromagnetic (AF) phase of MnWO4 (the so-called AF1phase) exhibits different spin-canting configurations at two Mn2+ sublattices of the(3 + 1)-dimensional magnetic structure. The suggested superspace group P2.1(, 1/2, )0sis a significant consequence of the polar space group P2 true for the nuclear structure ofMnWO4. Density functional theory calculations showed that its ground state prefers this twospin-canting system. The structural difference between two independent atomic sites for Mn(Mna, Mnb) is too small to allow microscopically detectable electric polarisation. However,this hidden intrinsic polar character allows AF1 two commensurately modulated spin-cantingtextures. This is considered as the prerequisite onset of the improper ferroelectricity enhancedby the helical spin order in the multiferroic phase AF2 of MnWO4.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Magnetism
|0 V:(DE-MLZ)SciArea-170
|2 V:(DE-HGF)
|x 0
650 1 7 |a Magnetic Materials
|0 V:(DE-MLZ)GC-1604-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e RESI: Thermal neutron single crystal diffractometer
|f SR8b
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)RESI-20140101
|5 EXP:(DE-MLZ)RESI-20140101
|6 EXP:(DE-MLZ)SR8b-20140101
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e PANDA: Cold three axes spectrometer
|f SR2
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)PANDA-20140101
|5 EXP:(DE-MLZ)PANDA-20140101
|6 EXP:(DE-MLZ)SR2-20140101
|x 1
700 1 _ |a Liu, B-Q
|0 FZJ:b. liu@fz-juelich.de
|b 1
700 1 _ |a Behal, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pedersen, B.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schneidewind, Astrid
|0 P:(DE-Juel1)156579
|b 4
|u fzj
773 _ _ |a 10.1088/1361-648X/aaaeae
|g Vol. 30, no. 13, p. 135802 -
|0 PERI:(DE-600)1472968-4
|n 13
|p 135802 -
|t Journal of physics / Condensed matter
|v 30
|y 2018
|x 1361-648X
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844691/files/Park_2018_J._Phys.__Condens._Matter_30_135802.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844691
|p VDB:MLZ
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 FZJ:b. liu@fz-juelich.de
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)156579
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS-CONDENS MAT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21