001     844737
005     20230426083158.0
024 7 _ |a 10.1103/PhysRevB.97.054513
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/17754
|2 Handle
024 7 _ |a WOS:000425491500009
|2 WOS
024 7 _ |a altmetric:30466039
|2 altmetric
037 _ _ |a FZJ-2018-02117
082 _ _ |a 530
100 1 _ |a Hosseinkhani, A.
|0 P:(DE-Juel1)164373
|b 0
|u fzj
245 _ _ |a Proximity effect in normal-metal quasiparticle traps
260 _ _ |a Woodbury, NY
|c 2018
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522141324_29486
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In many superconducting devices, including qubits, quasiparticle excitations are detrimental. A normal metal (N) in contact with a superconductor (S) can trap these excitations; therefore, such a trap can potentially improve the device's performances. The two materials influence each other, a phenomenon known as proximity effect which has drawn attention since the 1960's. Here, we study whether this mutual influence places a limitation on the possible performance improvement in superconducting qubits. We first revisit the proximity effect in uniform NS bilayers; we show that the density of states is of the Dynes type above the minigap. We then extend our results to describe a nonuniform system in the vicinity of a trap edge. Using these results together with a phenomenological model for the suppression of the quasiparticle density due to the trap, we find in a transmon qubit an optimum trap-junction distance at which the qubit relaxation rate is minimized. This optimum distance, of the order of 4 to 20 coherence lengths, originates from the competition between proximity effect and quasiparticle density suppression. We conclude that the harmful influence of the proximity effect can be avoided so long as the trap is farther away from the junction than this optimum.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2018-02-20
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 1
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevb.97.054513
|b American Physical Society (APS)
|d 2018-02-20
|n 5
|p 054513
|3 journal-article
|2 Crossref
|t Physical Review B
|v 97
|y 2018
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.97.054513
|g Vol. 97, no. 5, p. 054513
|0 PERI:(DE-600)2844160-6
|n 5
|p 054513
|t Physical review / B
|v 97
|y 2018
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/844737/files/PhysRevB.97.054513.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:844737
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)164373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 1 _ |a FullTexts
999 C 5 |a 10.1038/nature02037
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.85.1421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.077002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.240501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.167004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms2936
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.066802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.108.230509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.117002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms6836
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms10977
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.4730407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.126474
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.214521
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.96.220501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.94.104516
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0031-9163(63)90401-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.36.225
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.175.537
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3025
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.9443
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/epl/i2001-00361-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF00683247
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1023/A:1022628927203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.052507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.064514
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.197002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.88.075428
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevX.4.011033
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.094518
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.144503
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.064517
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevApplied.8.064028
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/RevModPhys.58.323
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 V. Chandrasekhar
|y 2004
|2 Crossref
|t The Physics of Superconductors
|o V. Chandrasekhar The Physics of Superconductors 2004
999 C 5 |a 10.1006/spmi.1999.0710
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1093/acprof:oso/9780198507888.001.0001
|1 N. Kopnin
|2 Crossref
|9 -- missing cx lookup --
|y 2001
999 C 5 |a 10.1103/PhysRevLett.25.507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.41.1509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.28.1559
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.14.4854
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-2048/28/4/045005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.113.247001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.114.240501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.174533
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.157003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 M. Yu. Kupriyanov
|y 1988
|2 Crossref
|o M. Yu. Kupriyanov 1988
999 C 5 |1 M. Yu. Kupriyanov
|y 1988
|2 Crossref
|o M. Yu. Kupriyanov 1988
999 C 5 |a 10.1103/PhysRevB.55.6015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/10/5/003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 A. V. Zaitsev
|y 1984
|2 Crossref
|o A. V. Zaitsev 1984
999 C 5 |1 A. V. Zaitsev
|y 1984
|2 Crossref
|o A. V. Zaitsev 1984


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21