000844740 001__ 844740
000844740 005__ 20240711092245.0
000844740 0247_ $$2doi$$a10.1016/j.ceramint.2017.10.129
000844740 0247_ $$2ISSN$$a0272-8842
000844740 0247_ $$2ISSN$$a0392-2960
000844740 0247_ $$2WOS$$aWOS:000418211600090
000844740 037__ $$aFZJ-2018-02120
000844740 082__ $$a670
000844740 1001_ $$0P:(DE-HGF)0$$aHu, Xitao$$b0
000844740 245__ $$aMechanical and Electrochemical Properties of Cubic and Tetragonal LixLa0.557TiO3 Perovskite Oxide Electrolytes
000844740 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000844740 3367_ $$2DRIVER$$aarticle
000844740 3367_ $$2DataCite$$aOutput Types/Journal article
000844740 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1522141925_1373
000844740 3367_ $$2BibTeX$$aARTICLE
000844740 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000844740 3367_ $$00$$2EndNote$$aJournal Article
000844740 520__ $$aSolid oxide electrolytes with high Li ion conductivity and mechanical stability are vital for all solid-state lithium ion batteries. The perovskite material LixLa0.557TiO3 with various initial Li (0.303 ≤ x ≤ 0.370) is synthesized by traditional solid-state reaction. The cubic and tetragonal structures are prepared with fast and slow cooling, respectively. The results reveal that the Li ion conductivity of the cubic structure is higher. In fact, the bulk conductivity of 1.65 × 10−3 S cm−1 is obtained at room temperature for x = 0.350. The crystal structure is not affected by the Li2O quantity. In addition, Young's modulus, hardness, and fracture toughness are determined with indentation method for both structures. The Young's modulus increases with increasing Li2O. However, hardness and fracture toughness keep a relatively stable value independent of Li2O quantity
000844740 536__ $$0G:(DE-HGF)POF3-111$$a111 - Efficient and Flexible Power Plants (POF3-111)$$cPOF3-111$$fPOF III$$x0
000844740 588__ $$aDataset connected to CrossRef
000844740 7001_ $$0P:(DE-HGF)0$$aCheng, Xu$$b1
000844740 7001_ $$0P:(DE-HGF)0$$aQin, Shimin$$b2
000844740 7001_ $$0P:(DE-Juel1)171373$$aYan, Gang$$b3
000844740 7001_ $$0P:(DE-Juel1)129755$$aMalzbender, Jürgen$$b4$$eCorresponding author
000844740 7001_ $$0P:(DE-HGF)0$$aQiang, Wenjiang$$b5
000844740 7001_ $$0P:(DE-HGF)0$$aHuang, Bingxin$$b6$$eCorresponding author
000844740 773__ $$0PERI:(DE-600)2018052-4$$a10.1016/j.ceramint.2017.10.129$$gVol. 44, no. 2, p. 1902 - 1908$$n2$$p1902 - 1908$$tCeramics international$$v44$$x0272-8842$$y2018
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.pdf$$yRestricted
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.gif?subformat=icon$$xicon$$yRestricted
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000844740 8564_ $$uhttps://juser.fz-juelich.de/record/844740/files/1-s2.0-S0272884217323386-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000844740 909CO $$ooai:juser.fz-juelich.de:844740$$pVDB
000844740 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171373$$aForschungszentrum Jülich$$b3$$kFZJ
000844740 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129755$$aForschungszentrum Jülich$$b4$$kFZJ
000844740 9131_ $$0G:(DE-HGF)POF3-111$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vEfficient and Flexible Power Plants$$x0
000844740 9141_ $$y2018
000844740 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000844740 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCERAM INT : 2015
000844740 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000844740 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000844740 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000844740 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000844740 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000844740 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000844740 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000844740 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000844740 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000844740 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000844740 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000844740 980__ $$ajournal
000844740 980__ $$aVDB
000844740 980__ $$aI:(DE-Juel1)IEK-2-20101013
000844740 980__ $$aUNRESTRICTED
000844740 981__ $$aI:(DE-Juel1)IMD-1-20101013