001     844745
005     20240711092246.0
024 7 _ |a 10.1016/j.jeurceramsoc.2018.02.014
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a WOS:000430647800013
|2 WOS
037 _ _ |a FZJ-2018-02125
082 _ _ |a 660
100 1 _ |a Oliveira Silva, R.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Microstructure and Anisotropic Mechanical Properties of Freeze Dried SrTi0.75Fe0.25O3-δ for Oxygen Transport Membrane Substrates
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1522147423_12819
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Hierarchically porous SrTi0.75Fe0.25O3-δ specimens were produced through a freeze drying procedure, which yielded a channel-like porosity, reaching a value of 32%. Compressive testing was used to determine apparent elastic modulus and fracture stresses in the transverse (out-of-plane) and longitudinal (in-plane) direction, revealing a strong dependence onto pore orientation. The lower mechanical stability in the in-plane direction appears to be associated with bending mode of the pore walls, being a result of a lower resistance to crack initiation. Acoustic emissions recorded during compressive tests indicated continuous damage of the pore walls before complete failure of the specimen, which could be also confirmed by complementary in-situ compressive tests in a scanning electronic microscope.
536 _ _ |a 111 - Efficient and Flexible Power Plants (POF3-111)
|0 G:(DE-HGF)POF3-111
|c POF3-111
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Malzbender, J.
|0 P:(DE-Juel1)129755
|b 1
700 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 2
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 3
700 1 _ |a Krüger, M.
|0 P:(DE-Juel1)172056
|b 4
700 1 _ |a Guillon, O.
|0 P:(DE-Juel1)161591
|b 5
773 _ _ |a 10.1016/j.jeurceramsoc.2018.02.014
|g Vol. 38, no. 7, p. 2774 - 2783
|0 PERI:(DE-600)2013983-4
|n 7
|p 2774 - 2783
|t Journal of the European Ceramic Society
|v 38
|y 2018
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844745/files/1-s2.0-S0955221918300888-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844745
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129755
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129660
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-111
|2 G:(DE-HGF)POF3-100
|v Efficient and Flexible Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21