001     844794
005     20210129233109.0
024 7 _ |a 10.1016/j.brs.2018.03.009
|2 doi
024 7 _ |a pmid:29655586
|2 pmid
024 7 _ |a WOS:000436849700030
|2 WOS
024 7 _ |a altmetric:34386593
|2 altmetric
037 _ _ |a FZJ-2018-02170
082 _ _ |a 610
100 1 _ |a Dafsari, Haidar Salimi
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Non-motor outcomes of subthalamic stimulation in Parkinson's disease depend on location of active contacts
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530271423_14339
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a BackgroundSubthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS.ObjectiveTo investigate the impact of active contact location on NMS in STN-DBS in PD.MethodsIn this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables.ResultsNMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores.ConclusionsOur study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Petry-Schmelzer, Jan Niklas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ray-Chaudhuri, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ashkan, Keyoumars
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Weis, Luca
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Dembek, Till A.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Samuel, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rizos, Alexandra
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Silverdale, Monty
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Barbe, Michael T.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Fink, Gereon R.
|0 P:(DE-Juel1)131720
|b 10
700 1 _ |a Evans, Julian
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Martinez-Martin, Pablo
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Antonini, Angelo
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Visser-Vandewalle, Veerle
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Timmermann, Lars
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1016/j.brs.2018.03.009
|0 PERI:(DE-600)2404774-0
|n 4
|p 904-912
|t Brain stimulation
|v 11
|y 2018
|x 1876-4754
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/844794/files/1-s2.0-S1935861X18300925-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844794
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131720
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN STIMUL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21