001     844805
005     20240625095126.0
024 7 _ |a 10.1016/j.bbrc.2018.01.160
|2 doi
024 7 _ |a 0006-291X
|2 ISSN
024 7 _ |a 1090-2104
|2 ISSN
024 7 _ |a 2128/19158
|2 Handle
024 7 _ |a pmid:29409902
|2 pmid
024 7 _ |a WOS:000430035400015
|2 WOS
024 7 _ |a altmetric:32757771
|2 altmetric
037 _ _ |a FZJ-2018-02179
082 _ _ |a 570
100 1 _ |a Schneider, Jakob
|0 0000-0001-5321-4764
|b 0
245 _ _ |a Predicting ligand binding poses for low-resolution membrane protein models: Perspectives from multiscale simulations
260 _ _ |a Orlando, Fla.
|c 2018
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1530165473_14342
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Membrane receptors constitute major targets for pharmaceutical intervention. Drug design efforts rely on the identification of ligand binding poses. However, the limited experimental structural information available may make this extremely challenging, especially when only low-resolution homology models are accessible. In these cases, the predictions may be improved by molecular dynamics simulation approaches. Here we review recent developments of multiscale, hybrid molecular mechanics/coarse-grained (MM/CG) methods applied to membrane proteins. In particular, we focus on our in-house MM/CG approach. It is especially tailored for G-protein coupled receptors, the largest membrane receptor family in humans. We show that our MM/CG approach is able to capture the atomistic details of the receptor/ligand binding interactions, while keeping the computational cost low by representing the protein frame and the membrane environment in a highly simplified manner. We close this review by discussing ongoing improvements and challenges of the current implementation of our MM/CG code
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Korshunova, Ksenia
|0 P:(DE-Juel1)171535
|b 1
|u fzj
700 1 _ |a Musiani, Francesco
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Alfonso-Prieto, Mercedes
|0 P:(DE-Juel1)169976
|b 3
|e Corresponding author
700 1 _ |a Giorgetti, Alejandro
|0 P:(DE-Juel1)165199
|b 4
|u fzj
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 5
|e Corresponding author
|u fzj
770 _ _ |a Multiscale Modeling
773 _ _ |a 10.1016/j.bbrc.2018.01.160
|g Vol. 498, no. 2, p. 366 - 374
|0 PERI:(DE-600)1461396-7
|n 2
|p 366 - 374
|t Biochemical and biophysical research communications
|v 498
|y 2018
|x 0006-291X
856 4 _ |u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.pdf
|y Restricted
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|u https://juser.fz-juelich.de/record/844805/files/MMCG_review_Carloni_BBRC_Final_Draft_Post_Referee_nice.pdf
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon
|u https://juser.fz-juelich.de/record/844805/files/MMCG_review_Carloni_BBRC_Final_Draft_Post_Referee_nice.gif?subformat=icon
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-1440
|u https://juser.fz-juelich.de/record/844805/files/MMCG_review_Carloni_BBRC_Final_Draft_Post_Referee_nice.jpg?subformat=icon-1440
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-180
|u https://juser.fz-juelich.de/record/844805/files/MMCG_review_Carloni_BBRC_Final_Draft_Post_Referee_nice.jpg?subformat=icon-180
856 4 _ |y Published on 2018-02-02. Available in OpenAccess from 2019-02-02.
|x icon-640
|u https://juser.fz-juelich.de/record/844805/files/MMCG_review_Carloni_BBRC_Final_Draft_Post_Referee_nice.jpg?subformat=icon-640
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/844805/files/1-s2.0-S0006291X18301839-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:844805
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0000-0001-5321-4764
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 0000-0001-5321-4764
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171535
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)171535
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 P:(DE-HGF)0
910 1 _ |a University of Bologna
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)169976
910 1 _ |a Heinrich Heine University Düsseldorf
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-Juel1)169976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165199
910 1 _ |a University of Verona
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165199
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145614
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOCHEM BIOPH RES CO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21