001     844807
005     20210129233114.0
024 7 _ |a 10.1175/BAMS-D-17-0064.1
|2 doi
024 7 _ |a 0003-0007
|2 ISSN
024 7 _ |a 1520-0477
|2 ISSN
024 7 _ |a 2128/19819
|2 Handle
024 7 _ |a WOS:000448508300008
|2 WOS
037 _ _ |a FZJ-2018-02181
041 _ _ |a English
082 _ _ |a 550
100 1 _ |a Tratt, David M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a GHOST: A Satellite Mission Concept for Persistent Monitoring of Stratospheric Gravity Waves Induced by Severe Storms
260 _ _ |a Boston, Mass.
|c 2018
|b ASM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1539779885_27720
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The prediction of tropical cyclone rapid intensification is one of the most pressing unsolved problems in hurricane forecasting. The signatures of gravity waves launched by strong convective updrafts are often clearly seen in airglow and carbon dioxide thermal emission spectra under favorable atmospheric conditions. By continuously monitoring the Atlantic hurricane belt from the main development region to the vulnerable sections of the continental U.S. at high cadence it will be possible to investigate the utility of storm-induced gravity wave observations for the diagnosis of impending storm intensification. Such a capability would also enable significant improvements in our ability to characterize the 3D, transient behavior of upper atmospheric gravity waves, and point the way to future observing strategies that could mitigate the risk to human life due to severe storms. This paper describes a new mission concept involving a mid-infrared imager hosted aboard a geostationary satellite positioned at approximately 80°W longitude. The sensor’s 3-km pixel size ensures that gravity wave horizontal structure is adequately resolved, while a 30-s refresh rate enables improved definition of the dynamic intensification process. In this way the transient development of gravity wave perturbations caused by both convective and cyclonic storms may be discerned in near realtime.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hackwell, John A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Valant-Spaight, Bonnie L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Walterscheid, Richard L.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gelinas, Lynette J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Hecht, James H.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Swenson, Charles M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lampen, Caleb P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Alexander, M. Joan
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 9
700 1 _ |a Nolan, David S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Miller, Steven D.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hall, Jeffrey L.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Atlas, Robert
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Marks, Frank D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Partain, Philip T.
|0 P:(DE-HGF)0
|b 15
773 _ _ |a 10.1175/BAMS-D-17-0064.1
|g p. BAMS-D-17-0064.1
|0 PERI:(DE-600)2029396-3
|p 1813–1828
|t Bulletin of the American Meteorological Society
|v 99
|y 2018
|x 1520-0477
856 4 _ |u https://juser.fz-juelich.de/record/844807/files/bams-d-17-0064.1.pdf
|y Published on 2018-10-09. Available in OpenAccess from 2019-04-09.
909 C O |o oai:juser.fz-juelich.de:844807
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b B AM METEOROL SOC : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b B AM METEOROL SOC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21